論文の概要: Impromptu Cybercrime Euphemism Detection
- arxiv url: http://arxiv.org/abs/2412.01413v2
- Date: Tue, 03 Dec 2024 07:12:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:46:57.999210
- Title: Impromptu Cybercrime Euphemism Detection
- Title(参考訳): Impromptu Cybercrime Euphemism Detection
- Authors: Xiang Li, Yucheng Zhou, Laiping Zhao, Jing Li, Fangming Liu,
- Abstract要約: 本稿では,Impromptu Cybercrime Euphemisms Detectionデータセットを紹介する。
本稿では,この問題に適した検出フレームワークを提案する。
提案手法は,従来の最先端のエウヘミズム検出器と比較して,76倍の精度向上を実現している。
- 参考スコア(独自算出の注目度): 20.969469059941545
- License:
- Abstract: Detecting euphemisms is essential for content security on various social media platforms, but existing methods designed for detecting euphemisms are ineffective in impromptu euphemisms. In this work, we make a first attempt to an exploration of impromptu euphemism detection and introduce the Impromptu Cybercrime Euphemisms Detection (ICED) dataset. Moreover, we propose a detection framework tailored to this problem, which employs context augmentation modeling and multi-round iterative training. Our detection framework mainly consists of a coarse-grained and a fine-grained classification model. The coarse-grained classification model removes most of the harmless content in the corpus to be detected. The fine-grained model, impromptu euphemisms detector, integrates context augmentation and multi-round iterations training to better predicts the actual meaning of a masked token. In addition, we leverage ChatGPT to evaluate the mode's capability. Experimental results demonstrate that our approach achieves a remarkable 76-fold improvement compared to the previous state-of-the-art euphemism detector.
- Abstract(参考訳): 様々なソーシャルメディアプラットフォーム上でのコンテンツセキュリティにはエウヘミズムの検出が不可欠であるが、エウヘミズムを検出するために設計された既存の手法は即興のエウヘミズムでは効果がない。
本研究では,Impromptu euphemism Detection (ICED)データセットを導入し,Impromptu Cybercrime Euphemisms Detection (ICED)データセットを提案する。
さらに,コンテキスト拡張モデリングとマルチラウンド反復学習を併用した,この問題に適した検出フレームワークを提案する。
検出フレームワークは主に粗粒度と細粒度分類モデルで構成されている。
粗粒度分類モデルは検出対象コーパスの無害な内容の大部分を除去する。
インプロンプトゥ・エウヘミズム検出装置(英語版)は、コンテキスト拡張と複数ラウンドの反復訓練を統合し、マスクされたトークンの実際の意味をより正確に予測する。
さらに、ChatGPTを利用してモードの能力を評価する。
実験の結果,従来の最先端のエフェヘム検出器と比較して76倍の精度向上が得られた。
関連論文リスト
- Detecting Emotional Incongruity of Sarcasm by Commonsense Reasoning [32.5690489394632]
本論文は, 語義的意味に反する批判, モック, その他の否定的な感情を伝えるか否かを識別することを目的とした, 皮肉検出に焦点を当てた。
既存のメソッドは、複雑な現実世界のシナリオに直面した時に、常識的な推論能力に欠けており、不満足なパフォーマンスをもたらします。
本研究では,EICR と呼ばれるコモンセンス拡張に基づく不整合推論を行うサルカズム検出のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-17T11:25:55Z) - Imperceptible Face Forgery Attack via Adversarial Semantic Mask [59.23247545399068]
本稿では, 対向性, 可視性に優れた対向性例を生成できるASMA(Adversarial Semantic Mask Attack framework)を提案する。
具体的には, 局所的なセマンティック領域の摂動を抑制し, 良好なステルス性を実現する, 対向型セマンティックマスク生成モデルを提案する。
論文 参考訳(メタデータ) (2024-06-16T10:38:11Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
ディープフェイクは現実的な顔操作であり、セキュリティ、プライバシー、信頼に深刻な脅威をもたらす可能性がある。
既存の方法は、このタスクを、デジタルラベルまたはマスク信号を使用して検出モデルをトレーニングするバイナリ分類として扱う。
本稿では, 微粒な文レベルのプロンプトをアノテーションとして用いた, VLFFD (Visual-Linguistic Face Forgery Detection) という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:22:33Z) - Improving the Robustness of Summarization Systems with Dual Augmentation [68.53139002203118]
頑健な要約システムは、入力中の特定の単語の選択やノイズに関わらず、文書のギストをキャプチャできるべきである。
まず,単語レベルの同義語置換や雑音を含む摂動に対する要約モデルの頑健性について検討する。
SummAttackerを提案する。これは言語モデルに基づく対数サンプルを生成するための効率的な手法である。
論文 参考訳(メタデータ) (2023-06-01T19:04:17Z) - Uncertainty-based Detection of Adversarial Attacks in Semantic
Segmentation [16.109860499330562]
本稿では,セマンティックセグメンテーションにおける敵攻撃検出のための不確実性に基づくアプローチを提案する。
本研究は,複数種類の敵対的攻撃を対象とする摂動画像の検出能力を示す。
論文 参考訳(メタデータ) (2023-05-22T08:36:35Z) - Verifying the Robustness of Automatic Credibility Assessment [50.55687778699995]
入力テキストにおける意味保存的変化がモデルを誤解させる可能性があることを示す。
また、誤情報検出タスクにおける被害者モデルと攻撃方法の両方をテストするベンチマークであるBODEGAについても紹介する。
我々の実験結果によると、現代の大規模言語モデルは、以前のより小さなソリューションよりも攻撃に対して脆弱であることが多い。
論文 参考訳(メタデータ) (2023-03-14T16:11:47Z) - TextShield: Beyond Successfully Detecting Adversarial Sentences in Text
Classification [6.781100829062443]
敵攻撃は、安全クリティカルなアプリケーションへのモデルのデプロイを妨げる、NLPのニューラルネットワークモデルにとって大きな課題となる。
従来の検出方法は、相手文に対して正しい予測を与えることができない。
本稿では,入力文が逆であるか否かを効果的に検出できる唾液度に基づく検出器を提案する。
論文 参考訳(メタデータ) (2023-02-03T22:58:07Z) - SegTAD: Precise Temporal Action Detection via Semantic Segmentation [65.01826091117746]
意味的セグメンテーションの新しい視点で時間的行動検出のタスクを定式化する。
TADの1次元特性により、粗粒度検出アノテーションを細粒度セマンティックセマンティックアノテーションに無償で変換できる。
1Dセマンティックセグメンテーションネットワーク(1D-SSN)と提案検出ネットワーク(PDN)からなるエンドツーエンドフレームワークSegTADを提案する。
論文 参考訳(メタデータ) (2022-03-03T06:52:13Z) - ProtAugment: Unsupervised diverse short-texts paraphrasing for intent
detection meta-learning [4.689945062721168]
本稿では,意図検出のためのメタ学習アルゴリズムであるProtAugmentを提案する。
ProtAugmentはPrototypeal Networksの新たな拡張である。
論文 参考訳(メタデータ) (2021-05-27T08:31:27Z) - Discriminative Nearest Neighbor Few-Shot Intent Detection by
Transferring Natural Language Inference [150.07326223077405]
データ不足を緩和するためには、ほとんどショットラーニングが注目を集めている。
深部自己注意を伴う識別的近傍分類を提示する。
自然言語推論モデル(NLI)を変換することで識別能力を高めることを提案する。
論文 参考訳(メタデータ) (2020-10-25T00:39:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。