論文の概要: CSP-AIT-Net: A contrastive learning-enhanced spatiotemporal graph attention framework for short-term metro OD flow prediction with asynchronous inflow tracking
- arxiv url: http://arxiv.org/abs/2412.01419v2
- Date: Sat, 08 Feb 2025 15:51:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:26:35.146468
- Title: CSP-AIT-Net: A contrastive learning-enhanced spatiotemporal graph attention framework for short-term metro OD flow prediction with asynchronous inflow tracking
- Title(参考訳): CSP-AIT-Net:非同期インフロートラッキングを用いた短時間ODフロー予測のための対照的な学習強調時空間グラフアテンションフレームワーク
- Authors: Yichen Wang, Chengcheng Yu,
- Abstract要約: 現在のモデルでは、オリジン・デスティネーション(OD)の乗客フローデータの非同期離脱特性を捉えることができないことが多い。
本稿では,非同期なインフロートラッキングと高度なセマンティクスを組み込むことで,ODフローの予測を改善する新しいフレームワークを提案する。
この作業は、メトロの運用効率の向上、スケジューリングの精度の向上、システム全体の安全性の向上に寄与する。
- 参考スコア(独自算出の注目度): 0.7437000580479967
- License:
- Abstract: Accurate origin-destination (OD) passenger flow prediction is crucial for enhancing metro system efficiency, optimizing scheduling, and improving passenger experiences. However, current models often fail to effectively capture the asynchronous departure characteristics of OD flows and underutilize the inflow and outflow data, which limits their prediction accuracy. To address these issues, we propose CSP-AIT-Net, a novel spatiotemporal graph attention framework designed to enhance OD flow prediction by incorporating asynchronous inflow tracking and advanced station semantics representation. Our framework restructures the OD flow prediction paradigm by first predicting outflows and then decomposing OD flows using a spatiotemporal graph attention mechanism. To enhance computational efficiency, we introduce a masking mechanism and propose asynchronous passenger flow graphs that integrate inflow and OD flow with conservation constraints. Furthermore, we employ contrastive learning to extract high-dimensional land use semantics of metro stations, enriching the contextual understanding of passenger mobility patterns. Validation of the Shanghai metro system demonstrates improvement in short-term OD flow prediction accuracy over state-of-the-art methods. This work contributes to enhancing metro operational efficiency, scheduling precision, and overall system safety.
- Abstract(参考訳): 正確なオリジン決定(OD)乗客フロー予測は、メトロシステムの効率の向上、スケジューリングの最適化、乗客体験の向上に不可欠である。
しかし、現在のモデルでは、ODフローの非同期離脱特性を効果的に捉えず、インフローとアウトフローデータを不活用し、予測精度を制限している場合が多い。
CSP-AIT-Netは,非同期なインフロー追跡とアドバンストステーションセマンティクス表現を組み込むことで,ODフローの予測を改善するために設計された新しい時空間グラフアテンションフレームワークである。
本フレームワークは,最初に流出フローを予測し,時空間グラフアテンション機構を用いてODフローを分解することにより,ODフロー予測パラダイムを再構築する。
計算効率を向上させるため,マスク機構を導入し,インフローとODフローを保護制約で統合した非同期な乗客フローグラフを提案する。
さらに、コントラスト学習を用いて、地下鉄駅の高次元土地利用意味を抽出し、乗客の移動パターンの文脈的理解を深める。
上海都市圏システムの検証は,最先端手法による短期OD流量予測精度の向上を示す。
この作業は、メトロの運用効率の向上、スケジューリングの精度の向上、システム全体の安全性の向上に寄与する。
関連論文リスト
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - ST-Mamba: Spatial-Temporal Selective State Space Model for Traffic Flow Prediction [32.44888387725925]
提案したST-Mambaモデルは,まず,グラフモデルを用いることなく交通流予測における時空間学習のパワーを活用する。
提案したST-Mambaモデルでは、計算速度が61.11%向上し、予測精度が0.67%向上した。
実世界のトラフィックデータセットを用いた実験は、textsfST-Mambaモデルがトラフィックフロー予測の新しいベンチマークを設定することを示した。
論文 参考訳(メタデータ) (2024-04-20T03:57:57Z) - Predicting Traffic Flow with Federated Learning and Graph Neural with Asynchronous Computations Network [0.0]
我々はFLAGCN(Federated Learning and Asynchronous Graph Convolutional Networks)と呼ばれる新しいディープラーニング手法を提案する。
本フレームワークでは,リアルタイムトラフィックフロー予測の精度と効率を高めるために,非同期グラフ畳み込みネットワークとフェデレーション学習の原理を取り入れている。
論文 参考訳(メタデータ) (2024-01-05T09:36:42Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z) - Online Spatio-Temporal Correlation-Based Federated Learning for Traffic
Flow Forecasting [11.253575460227127]
本稿では,FLフレームワークにおけるオンライン学習(OL)方式を用いた交通流の予測に関する最初の研究を行う。
次に,オンライン時空間相関に基づくフェデレート学習(FedOSTC)という新しい予測手法を提案する。
論文 参考訳(メタデータ) (2023-02-17T02:37:36Z) - Accurate non-stationary short-term traffic flow prediction method [0.0]
本稿では,Long Short-Term Memory (LSTM) に基づく,短時間のトラフィックフローを正確に予測できる手法を提案する。
提案手法は, 極端外れ値, 遅延効果, トレンド変化応答に対して, 優れた性能を有する他の最先端手法に対して良好に動作する。
論文 参考訳(メタデータ) (2022-05-01T17:11:34Z) - Bootstrap Motion Forecasting With Self-Consistent Constraints [52.88100002373369]
自己整合性制約を用いた動き予測をブートストラップする新しい枠組みを提案する。
運動予測タスクは、過去の空間的・時間的情報を組み込むことで、車両の将来の軌跡を予測することを目的としている。
提案手法は,既存手法の予測性能を常に向上することを示す。
論文 参考訳(メタデータ) (2022-04-12T14:59:48Z) - Real-time Object Detection for Streaming Perception [84.2559631820007]
ストリーミング知覚は,ビデオオンライン知覚の1つの指標として,レイテンシと精度を共同評価するために提案される。
ストリーミング知覚のためのシンプルで効果的なフレームワークを構築します。
提案手法はArgoverse-HDデータセット上での競合性能を実現し,強力なベースラインに比べてAPを4.9%向上させる。
論文 参考訳(メタデータ) (2022-03-23T11:33:27Z) - Spatial-Temporal Attention Fusion Network for short-term passenger flow
prediction on holidays in urban rail transit systems [9.725264855780482]
都市鉄道交通システムの短期的旅客フロー予測は、交通の運用と管理において非常に重要である。
既存のモデルのほとんどは、通常平日や週末に乗客の流れを予測するものである。
ホリデーシーズンの短期的乗客フロー予測のために,時空間注意融合ネットワークという深層学習モデルを提案する。
論文 参考訳(メタデータ) (2022-02-27T01:06:24Z) - GMFlow: Learning Optical Flow via Global Matching [124.57850500778277]
光フロー推定学習のためのGMFlowフレームワークを提案する。
機能拡張のためのカスタマイズトランスフォーマー、グローバル機能マッチングのための相関層とソフトマックス層、フロー伝搬のための自己保持層である。
我々の新しいフレームワークは、挑戦的なSintelベンチマークにおいて、32項目RAFTのパフォーマンスより優れています。
論文 参考訳(メタデータ) (2021-11-26T18:59:56Z) - Prediction of Traffic Flow via Connected Vehicles [77.11902188162458]
本稿では,交通機関が交通の流れを早期に制御し,渋滞を防止するための短期交通流予測フレームワークを提案する。
我々は,過去の流れデータと,コネクテッド・ビークル(CV)技術によって提供されるリアルタイムフィードや軌道データといった革新的な特徴に基づいて,将来の道路セグメントにおける流れを予測する。
本手法は, 流れの予測, CVが軌道に沿ったセグメントに現実的に遭遇する様々な事象の影響を組み込むことによって, 高度なモデリングを可能にすることを示す。
論文 参考訳(メタデータ) (2020-07-10T16:00:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。