Task Adaptation of Reinforcement Learning-based NAS Agents through Transfer Learning
- URL: http://arxiv.org/abs/2412.01420v2
- Date: Thu, 19 Dec 2024 15:51:33 GMT
- Title: Task Adaptation of Reinforcement Learning-based NAS Agents through Transfer Learning
- Authors: Amber Cassimon, Siegfried Mercelis, Kevin Mets,
- Abstract summary: We assess the abilities of reinforcement learning agents to transfer between different tasks.
We find that pretraining an agent on one task benefits the performance of the agent in another task in all but 1 task.
We also show that the training procedure for an agent can be shortened significantly by pretraining it on another task.
- Score: 0.0
- License:
- Abstract: Recently, a novel paradigm has been proposed for reinforcement learning-based NAS agents, that revolves around the incremental improvement of a given architecture. We assess the abilities of such reinforcement learning agents to transfer between different tasks. We perform our evaluation using the Trans-NASBench-101 benchmark, and consider the efficacy of the transferred agents, as well as how quickly they can be trained. We find that pretraining an agent on one task benefits the performance of the agent in another task in all but 1 task when considering final performance. We also show that the training procedure for an agent can be shortened significantly by pretraining it on another task. Our results indicate that these effects occur regardless of the source or target task, although they are more pronounced for some tasks than for others. Our results show that transfer learning can be an effective tool in mitigating the computational cost of the initial training procedure for reinforcement learning-based NAS agents.
Related papers
- Unprejudiced Training Auxiliary Tasks Makes Primary Better: A Multi-Task Learning Perspective [55.531894882776726]
Multi-task learning methods suggest using auxiliary tasks to enhance a neural network's performance on a specific primary task.
Previous methods often select auxiliary tasks carefully but treat them as secondary during training.
We propose an uncertainty-based impartial learning method that ensures balanced training across all tasks.
arXiv Detail & Related papers (2024-12-27T09:27:18Z) - Basis for Intentions: Efficient Inverse Reinforcement Learning using
Past Experience [89.30876995059168]
inverse reinforcement learning (IRL) -- inferring the reward function of an agent from observing its behavior.
This paper addresses the problem of IRL -- inferring the reward function of an agent from observing its behavior.
arXiv Detail & Related papers (2022-08-09T17:29:49Z) - Identifying Suitable Tasks for Inductive Transfer Through the Analysis
of Feature Attributions [78.55044112903148]
We use explainability techniques to predict whether task pairs will be complementary, through comparison of neural network activation between single-task models.
Our results show that, through this approach, it is possible to reduce training time by up to 83.5% at a cost of only 0.034 reduction in positive-class F1 on the TREC-IS 2020-A dataset.
arXiv Detail & Related papers (2022-02-02T15:51:07Z) - Adaptive Transfer Learning on Graph Neural Networks [4.233435459239147]
Graph neural networks (GNNs) are widely used to learn a powerful representation of graph-structured data.
Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation.
We propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task.
arXiv Detail & Related papers (2021-07-19T11:46:28Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
We propose a method for pre-training behavioral priors that can capture complex input-output relationships observed in successful trials.
We show how this learned prior can be used for rapidly learning new tasks without impeding the RL agent's ability to try out novel behaviors.
arXiv Detail & Related papers (2020-11-19T18:47:40Z) - Measuring and Harnessing Transference in Multi-Task Learning [58.48659733262734]
Multi-task learning can leverage information learned by one task to benefit the training of other tasks.
We analyze the dynamics of information transfer, or transference, across tasks throughout training.
arXiv Detail & Related papers (2020-10-29T08:25:43Z) - Exploring and Predicting Transferability across NLP Tasks [115.6278033699853]
We study the transferability between 33 NLP tasks across three broad classes of problems.
Our results show that transfer learning is more beneficial than previously thought.
We also develop task embeddings that can be used to predict the most transferable source tasks for a given target task.
arXiv Detail & Related papers (2020-05-02T09:39:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.