Bio-Inspired Adaptive Neurons for Dynamic Weighting in Artificial Neural Networks
- URL: http://arxiv.org/abs/2412.01454v1
- Date: Mon, 02 Dec 2024 12:45:30 GMT
- Title: Bio-Inspired Adaptive Neurons for Dynamic Weighting in Artificial Neural Networks
- Authors: Ashhadul Islam, Abdesselam Bouzerdoum, Samir Brahim Belhaouari,
- Abstract summary: Traditional neural networks employ fixed weights during inference, limiting their ability to adapt to changing input conditions.
We propose a novel framework for adaptive neural networks, where neuron weights are modeled as functions of the input signal.
- Score: 6.931200003384122
- License:
- Abstract: Traditional neural networks employ fixed weights during inference, limiting their ability to adapt to changing input conditions, unlike biological neurons that adjust signal strength dynamically based on stimuli. This discrepancy between artificial and biological neurons constrains neural network flexibility and adaptability. To bridge this gap, we propose a novel framework for adaptive neural networks, where neuron weights are modeled as functions of the input signal, allowing the network to adjust dynamically in real-time. Importantly, we achieve this within the same traditional architecture of an Artificial Neural Network, maintaining structural familiarity while introducing dynamic adaptability. In our research, we apply Chebyshev polynomials as one of the many possible decomposition methods to achieve this adaptive weighting mechanism, with polynomial coefficients learned during training. Out of the 145 datasets tested, our adaptive Chebyshev neural network demonstrated a marked improvement over an equivalent MLP in approximately 8\% of cases, performing strictly better on 121 datasets. In the remaining 24 datasets, the performance of our algorithm matched that of the MLP, highlighting its ability to generalize standard neural network behavior while offering enhanced adaptability. As a generalized form of the MLP, this model seamlessly retains MLP performance where needed while extending its capabilities to achieve superior accuracy across a wide range of complex tasks. These results underscore the potential of adaptive neurons to enhance generalization, flexibility, and robustness in neural networks, particularly in applications with dynamic or non-linear data dependencies.
Related papers
- Trainable Adaptive Activation Function Structure (TAAFS) Enhances Neural Network Force Field Performance with Only Dozens of Additional Parameters [0.0]
Trainable Adaptive Function Activation Structure (TAAFS)
We introduce a method that selects distinct mathematical formulations for non-linear activations.
In this study, we integrate TAAFS into a variety of neural network models, resulting in observed accuracy improvements.
arXiv Detail & Related papers (2024-12-19T09:06:39Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.
A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.
The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Advancing Spatio-Temporal Processing in Spiking Neural Networks through Adaptation [6.233189707488025]
In this article, we analyze the dynamical, computational, and learning properties of adaptive LIF neurons and networks thereof.
We show that the superiority of networks of adaptive LIF neurons extends to the prediction and generation of complex time series.
arXiv Detail & Related papers (2024-08-14T12:49:58Z) - Neuroevolving Electronic Dynamical Networks [0.0]
Neuroevolution is a method of applying an evolutionary algorithm to refine the performance of artificial neural networks through natural selection.
Fitness evaluation of continuous time recurrent neural networks (CTRNNs) can be time-consuming and computationally expensive.
Field programmable gate arrays (FPGAs) have emerged as an increasingly popular solution, due to their high performance and low power consumption.
arXiv Detail & Related papers (2024-04-06T10:54:35Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
We present Layer-wise Feedback Propagation (LFP), a novel training principle for neural network-like predictors.
LFP decomposes a reward to individual neurons based on their respective contributions to solving a given task.
Our method then implements a greedy approach reinforcing helpful parts of the network and weakening harmful ones.
arXiv Detail & Related papers (2023-08-23T10:48:28Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Expressive architectures enhance interpretability of dynamics-based
neural population models [2.294014185517203]
We evaluate the performance of sequential autoencoders (SAEs) in recovering latent chaotic attractors from simulated neural datasets.
We found that SAEs with widely-used recurrent neural network (RNN)-based dynamics were unable to infer accurate firing rates at the true latent state dimensionality.
arXiv Detail & Related papers (2022-12-07T16:44:26Z) - Effective and Efficient Computation with Multiple-timescale Spiking
Recurrent Neural Networks [0.9790524827475205]
We show how a novel type of adaptive spiking recurrent neural network (SRNN) is able to achieve state-of-the-art performance.
We calculate a $>$100x energy improvement for our SRNNs over classical RNNs on the harder tasks.
arXiv Detail & Related papers (2020-05-24T01:04:53Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z) - Flexible Transmitter Network [84.90891046882213]
Current neural networks are mostly built upon the MP model, which usually formulates the neuron as executing an activation function on the real-valued weighted aggregation of signals received from other neurons.
We propose the Flexible Transmitter (FT) model, a novel bio-plausible neuron model with flexible synaptic plasticity.
We present the Flexible Transmitter Network (FTNet), which is built on the most common fully-connected feed-forward architecture.
arXiv Detail & Related papers (2020-04-08T06:55:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.