Intelligent Spark Agents: A Modular LangGraph Framework for Scalable, Visualized, and Enhanced Big Data Machine Learning Workflows
- URL: http://arxiv.org/abs/2412.01490v4
- Date: Fri, 06 Dec 2024 13:21:40 GMT
- Title: Intelligent Spark Agents: A Modular LangGraph Framework for Scalable, Visualized, and Enhanced Big Data Machine Learning Workflows
- Authors: Jialin Wang, Zhihua Duan,
- Abstract summary: LangGraph framework is designed to enhance machine learning through scalability, visualization, and intelligent process optimization.<n>At its core, the framework introduces Agent AI, a pivotal innovation that leverages Spark's distributed computing capabilities.<n>The framework also incorporates large language models through the LangChain ecosystem, enhancing interaction with unstructured data.
- Score: 1.4582633500696451
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a Spark-based modular LangGraph framework, designed to enhance machine learning workflows through scalability, visualization, and intelligent process optimization. At its core, the framework introduces Agent AI, a pivotal innovation that leverages Spark's distributed computing capabilities and integrates with LangGraph for workflow orchestration. Agent AI facilitates the automation of data preprocessing, feature engineering, and model evaluation while dynamically interacting with data through Spark SQL and DataFrame agents. Through LangGraph's graph-structured workflows, the agents execute complex tasks, adapt to new inputs, and provide real-time feedback, ensuring seamless decision-making and execution in distributed environments. This system simplifies machine learning processes by allowing users to visually design workflows, which are then converted into Spark-compatible code for high-performance execution. The framework also incorporates large language models through the LangChain ecosystem, enhancing interaction with unstructured data and enabling advanced data analysis. Experimental evaluations demonstrate significant improvements in process efficiency and scalability, as well as accurate data-driven decision-making in diverse application scenarios. This paper emphasizes the integration of Spark with intelligent agents and graph-based workflows to redefine the development and execution of machine learning tasks in big data environments, paving the way for scalable and user-friendly AI solutions.
Related papers
- Iris: Breaking GUI Complexity with Adaptive Focus and Self-Refining [67.87810796668981]
Information-Sensitive Cropping (ISC) and Self-Refining Dual Learning (SRDL)
Iris achieves state-of-the-art performance across multiple benchmarks with only 850K GUI annotations.
These improvements translate to significant gains in both web and OS agent downstream tasks.
arXiv Detail & Related papers (2024-12-13T18:40:10Z) - Research on the Application of Spark Streaming Real-Time Data Analysis System and large language model Intelligent Agents [1.4582633500696451]
This study explores the integration of Agent AI with LangGraph to enhance real-time data analysis systems in big data environments.
The proposed framework overcomes limitations of static, inefficient stateful computations, and lack of human intervention.
System architecture incorporates Apache Spark Streaming, Kafka, and LangGraph to create a high-performance sentiment analysis system.
arXiv Detail & Related papers (2024-12-10T05:51:11Z) - Flex: End-to-End Text-Instructed Visual Navigation with Foundation Models [59.892436892964376]
We investigate the minimal data requirements and architectural adaptations necessary to achieve robust closed-loop performance with vision-based control policies.
Our findings are synthesized in Flex (Fly-lexically), a framework that uses pre-trained Vision Language Models (VLMs) as frozen patch-wise feature extractors.
We demonstrate the effectiveness of this approach on quadrotor fly-to-target tasks, where agents trained via behavior cloning successfully generalize to real-world scenes.
arXiv Detail & Related papers (2024-10-16T19:59:31Z) - Deep Fast Machine Learning Utils: A Python Library for Streamlined Machine Learning Prototyping [0.0]
The Deep Fast Machine Learning Utils (DFMLU) library provides tools designed to automate and enhance aspects of machine learning processes.
DFMLU offers functionalities that support model development and data handling.
This manuscript presents an overview of DFMLU's functionalities, providing Python examples for each tool.
arXiv Detail & Related papers (2024-09-14T21:39:17Z) - ToolACE: Winning the Points of LLM Function Calling [139.07157814653638]
ToolACE is an automatic agentic pipeline designed to generate accurate, complex, and diverse tool-learning data.
We demonstrate that models trained on our synthesized data, even with only 8B parameters, achieve state-of-the-art performance on the Berkeley Function-Calling Leaderboard.
arXiv Detail & Related papers (2024-09-02T03:19:56Z) - Towards an Integrated Performance Framework for Fire Science and Management Workflows [0.0]
This paper presents an artificial intelligence and machine learning (AI/ML) approach to performance assessment and optimization.
An associated early AI/ML framework spanning performance data collection, prediction and optimization is applied to wildfire science applications.
arXiv Detail & Related papers (2024-07-30T22:37:25Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
Large language model (LLM) agents have demonstrated impressive capabilities in utilizing external tools and knowledge to boost accuracy and hallucinations.
Here, we introduce AvaTaR, a novel and automated framework that optimize an LLM agent to effectively leverage provided tools, improving performance on a given task.
arXiv Detail & Related papers (2024-06-17T04:20:02Z) - CRAFT: Customizing LLMs by Creating and Retrieving from Specialized
Toolsets [75.64181719386497]
We present CRAFT, a tool creation and retrieval framework for large language models (LLMs)
It creates toolsets specifically curated for the tasks and equips LLMs with a component that retrieves tools from these sets to enhance their capability to solve complex tasks.
Our method is designed to be flexible and offers a plug-and-play approach to adapt off-the-shelf LLMs to unseen domains and modalities, without any finetuning.
arXiv Detail & Related papers (2023-09-29T17:40:26Z) - A Unified Active Learning Framework for Annotating Graph Data with
Application to Software Source Code Performance Prediction [4.572330678291241]
We develop a unified active learning framework specializing in software performance prediction.
We investigate the impact of using different levels of information for active and passive learning.
Our approach aims to improve the investment in AI models for different software performance predictions.
arXiv Detail & Related papers (2023-04-06T14:00:48Z) - Nemo: Guiding and Contextualizing Weak Supervision for Interactive Data
Programming [77.38174112525168]
We present Nemo, an end-to-end interactive Supervision system that improves overall productivity of WS learning pipeline by an average 20% (and up to 47% in one task) compared to the prevailing WS supervision approach.
arXiv Detail & Related papers (2022-03-02T19:57:32Z) - Fine-Tuning Data Structures for Analytical Query Processing [0.5156484100374058]
We introduce a framework for automatically choosing data structures to support efficient computation of analytical workloads.
We introduce a novel low-level intermediate language that can express the algorithms behind various query processing paradigms.
We show that the performance of the code generated by our framework either outperforms or is on par with the state-of-the-art analytical query engines.
arXiv Detail & Related papers (2021-12-24T16:36:35Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Automated Evolutionary Approach for the Design of Composite Machine
Learning Pipelines [48.7576911714538]
The proposed approach is aimed to automate the design of composite machine learning pipelines.
It designs the pipelines with a customizable graph-based structure, analyzes the obtained results, and reproduces them.
The software implementation on this approach is presented as an open-source framework.
arXiv Detail & Related papers (2021-06-26T23:19:06Z) - AutoGL: A Library for Automated Graph Learning [67.63587865669372]
We present Automated Graph Learning (AutoGL), the first dedicated library for automated machine learning on graphs.
AutoGL is open-source, easy to use, and flexible to be extended.
We also present AutoGL-light, a lightweight version of AutoGL to facilitate customizing pipelines and enriching applications.
arXiv Detail & Related papers (2021-04-11T10:49:23Z) - Learning Discrete Energy-based Models via Auxiliary-variable Local
Exploration [130.89746032163106]
We propose ALOE, a new algorithm for learning conditional and unconditional EBMs for discrete structured data.
We show that the energy function and sampler can be trained efficiently via a new variational form of power iteration.
We present an energy model guided fuzzer for software testing that achieves comparable performance to well engineered fuzzing engines like libfuzzer.
arXiv Detail & Related papers (2020-11-10T19:31:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.