Towards an Integrated Performance Framework for Fire Science and Management Workflows
- URL: http://arxiv.org/abs/2407.21231v1
- Date: Tue, 30 Jul 2024 22:37:25 GMT
- Title: Towards an Integrated Performance Framework for Fire Science and Management Workflows
- Authors: H. Ahmed, R. Shende, I. Perez, D. Crawl, S. Purawat, I. Altintas,
- Abstract summary: This paper presents an artificial intelligence and machine learning (AI/ML) approach to performance assessment and optimization.
An associated early AI/ML framework spanning performance data collection, prediction and optimization is applied to wildfire science applications.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reliable performance metrics are necessary prerequisites to building large-scale end-to-end integrated workflows for collaborative scientific research, particularly within context of use-inspired decision making platforms with many concurrent users and when computing real-time and urgent results using large data. This work is a building block for the National Data Platform, which leverages multiple use-cases including the WIFIRE Data and Model Commons for wildfire behavior modeling and the EarthScope Consortium for collaborative geophysical research. This paper presents an artificial intelligence and machine learning (AI/ML) approach to performance assessment and optimization of scientific workflows. An associated early AI/ML framework spanning performance data collection, prediction and optimization is applied to wildfire science applications within the WIFIRE BurnPro3D (BP3D) platform for proactive fire management and mitigation.
Related papers
- Final Report for CHESS: Cloud, High-Performance Computing, and Edge for Science and Security [5.781151161558928]
Methods for constructing continuum platforms, orchestrating workflow tasks, and curating datasets fail to achieve scientific requirements for performance, energy, security, and reliability.
Report describes the results and successes of CHESS from the perspective of open science.
arXiv Detail & Related papers (2024-10-21T15:16:00Z) - DSBench: How Far Are Data Science Agents to Becoming Data Science Experts? [58.330879414174476]
We introduce DSBench, a benchmark designed to evaluate data science agents with realistic tasks.
This benchmark includes 466 data analysis tasks and 74 data modeling tasks, sourced from Eloquence and Kaggle competitions.
Our evaluation of state-of-the-art LLMs, LVLMs, and agents shows that they struggle with most tasks, with the best agent solving only 34.12% of data analysis tasks and achieving a 34.74% Relative Performance Gap (RPG)
arXiv Detail & Related papers (2024-09-12T02:08:00Z) - Enabling High Data Throughput Reinforcement Learning on GPUs: A Domain Agnostic Framework for Data-Driven Scientific Research [90.91438597133211]
We introduce WarpSci, a framework designed to overcome crucial system bottlenecks in the application of reinforcement learning.
We eliminate the need for data transfer between the CPU and GPU, enabling the concurrent execution of thousands of simulations.
arXiv Detail & Related papers (2024-08-01T21:38:09Z) - LAMBDA: A Large Model Based Data Agent [7.240586338370509]
We introduce LArge Model Based Data Agent (LAMBDA), a novel open-source, code-free multi-agent data analysis system.
LAMBDA is designed to address data analysis challenges in complex data-driven applications.
It has the potential to enhance data analysis paradigms by seamlessly integrating human and artificial intelligence.
arXiv Detail & Related papers (2024-07-24T06:26:36Z) - CMDBench: A Benchmark for Coarse-to-fine Multimodal Data Discovery in Compound AI Systems [10.71630696651595]
Compound AI systems (CASs) that employ LLMs as agents to accomplish knowledge-intensive tasks have garnered significant interest within database and AI communities.
silos of multimodal data sources make it difficult to identify appropriate data sources for accomplishing the task at hand.
We propose CMDBench, a benchmark modeling the complexity of enterprise data platforms.
arXiv Detail & Related papers (2024-06-02T01:10:41Z) - Implicitly Guided Design with PropEn: Match your Data to Follow the Gradient [52.2669490431145]
PropEn is inspired by'matching', which enables implicit guidance without training a discriminator.
We show that training with a matched dataset approximates the gradient of the property of interest while remaining within the data distribution.
arXiv Detail & Related papers (2024-05-28T11:30:19Z) - Towards Lightweight Data Integration using Multi-workflow Provenance and
Data Observability [0.2517763905487249]
Integrated data analysis plays a crucial role in scientific discovery, especially in the current AI era.
We propose MIDA: an approach for lightweight runtime Multi-workflow Integrated Data Analysis.
We show near-zero overhead running up to 100,000 tasks on 1,680 CPU cores on the Summit supercomputer.
arXiv Detail & Related papers (2023-08-17T14:20:29Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - A Field Guide to Federated Optimization [161.3779046812383]
Federated learning and analytics are a distributed approach for collaboratively learning models (or statistics) from decentralized data.
This paper provides recommendations and guidelines on formulating, designing, evaluating and analyzing federated optimization algorithms.
arXiv Detail & Related papers (2021-07-14T18:09:08Z) - Efficient Data-specific Model Search for Collaborative Filtering [56.60519991956558]
Collaborative filtering (CF) is a fundamental approach for recommender systems.
In this paper, motivated by the recent advances in automated machine learning (AutoML), we propose to design a data-specific CF model.
Key here is a new framework that unifies state-of-the-art (SOTA) CF methods and splits them into disjoint stages of input encoding, embedding function, interaction and prediction function.
arXiv Detail & Related papers (2021-06-14T14:30:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.