論文の概要: Understanding complex crowd dynamics with generative neural simulators
- arxiv url: http://arxiv.org/abs/2412.01491v2
- Date: Tue, 03 Dec 2024 16:01:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:47:43.709068
- Title: Understanding complex crowd dynamics with generative neural simulators
- Title(参考訳): 生成型ニューラルシミュレータによる複雑な群集ダイナミクスの理解
- Authors: Koen Minartz, Fleur Hendriks, Simon Martinus Koop, Alessandro Corbetta, Vlado Menkovski,
- Abstract要約: 我々は、NeCS(Neural Crowd Simulator)を用いて、大規模データをトレーニングし、クラウドダイナミクスの重要な統計的特徴に対する検証を行う。
我々は,特定のシナリオを訓練することなく,効果的な群集動態実験を行うことができることを示す。
また,N体相互作用の視覚誘導とトポロジカルな性質も明らかにした。
- 参考スコア(独自算出の注目度): 43.02251339321427
- License:
- Abstract: Understanding the dynamics of pedestrian crowds is an outstanding challenge crucial for designing efficient urban infrastructure and ensuring safe crowd management. To this end, both small-scale laboratory and large-scale real-world measurements have been used. However, these approaches respectively lack statistical resolution and parametric controllability, both essential to discovering physical relationships underlying the complex stochastic dynamics of crowds. Here, we establish an investigation paradigm that offers laboratory-like controllability, while ensuring the statistical resolution of large-scale real-world datasets. Using our data-driven Neural Crowd Simulator (NeCS), which we train on large-scale data and validate against key statistical features of crowd dynamics, we show that we can perform effective surrogate crowd dynamics experiments without training on specific scenarios. We not only reproduce known experimental results on pairwise avoidance, but also uncover the vision-guided and topological nature of N-body interactions. These findings show how virtual experiments based on neural simulation enable data-driven scientific discovery.
- Abstract(参考訳): 歩行者の群集の動態を理解することは、効率的な都市インフラを設計し、安全な群集管理を確保する上で非常に重要な課題である。
この目的のために、小規模な実験室と大規模な実世界計測の両方が使用されている。
しかし、これらのアプローチには統計的分解能とパラメトリック制御性が欠如しており、どちらも群衆の複雑な確率力学の基礎となる物理的関係を発見するのに不可欠である。
そこで我々は,大規模な実世界のデータセットの統計的解像度を確保しつつ,実験室のような制御性を提供する調査パラダイムを確立する。
大規模データを学習し,集団動態の重要な統計的特徴に対する検証を行うデータ駆動型ニューラル・クラウド・シミュレータ(NeCS)を用いて,特定のシナリオをトレーニングすることなく,効果的なサロゲート・クラウド・ダイナミックス実験を行うことができることを示す。
我々は、ペア回避に関する既知の実験結果を再現するだけでなく、N体相互作用の視覚誘導的およびトポロジカルな性質を明らかにする。
これらの結果は、神経シミュレーションに基づく仮想実験が、どのようにデータ駆動の科学的発見を可能にするかを示している。
関連論文リスト
- Collaborative Imputation of Urban Time Series through Cross-city Meta-learning [54.438991949772145]
メタ学習型暗黙的ニューラル表現(INR)を利用した新しい協調的計算パラダイムを提案する。
次に,モデルに依存しないメタ学習による都市間協調学習手法を提案する。
20のグローバル都市から得られた多様な都市データセットの実験は、我々のモデルの優れた計算性能と一般化可能性を示している。
論文 参考訳(メタデータ) (2025-01-20T07:12:40Z) - Learning Continuous Network Emerging Dynamics from Scarce Observations
via Data-Adaptive Stochastic Processes [11.494631894700253]
我々は、データ適応型ネットワークダイナミクスによって制御される新しいプロセスのクラスであるODE Processs for Network Dynamics (NDP4ND)を紹介する。
提案手法はデータと計算効率に優れており,未確認のネットワークに適応できることを示す。
論文 参考訳(メタデータ) (2023-10-25T08:44:05Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
効果的なシミュレーションの鍵となる要素は、人間の知識と整合した現実的な交通モデルの導入である。
本研究では,現実主義に対する人間の嗜好のニュアンスを捉えることと,多様な交通シミュレーションモデルを統合することの2つの主な課題を明らかにする。
論文 参考訳(メタデータ) (2023-09-01T19:29:53Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
本研究では,高次元経験データから力学系を学習する手法を提案する。
我々は、システムの複数の異なるインスタンスからデータが利用できる設定に焦点を当てる。
我々は、単純な理論的分析と、合成および実世界のデータセットに関する広範な実験を通して行動を研究する。
論文 参考訳(メタデータ) (2023-06-21T07:52:07Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
機械学習とベイズ最適実験設計(BOED)を組み合わせた方法論を提案する。
本手法は,大規模スピンダイナミクスシミュレーションのためのニューラルネットワークモデルを用いて,BOEDの正確な分布と実用計算を行う。
数値ベンチマークでは,XPFS実験の誘導,モデルパラメータの予測,実験時間内でのより情報的な測定を行う上で,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-03T06:19:20Z) - GFlowNets for AI-Driven Scientific Discovery [74.27219800878304]
我々はGFlowNetsと呼ばれる新しい確率論的機械学習フレームワークを提案する。
GFlowNetsは、実験科学ループのモデリング、仮説生成、実験的な設計段階に適用できる。
我々は、GFlowNetsがAIによる科学的発見の貴重なツールになり得ると論じている。
論文 参考訳(メタデータ) (2023-02-01T17:29:43Z) - Learning dynamics from partial observations with structured neural ODEs [5.757156314867639]
本稿では,ニューラルODEに基づくシステム識別に関する幅広い物理的知見を取り入れたフレキシブルなフレームワークを提案する。
本稿では,ロボット外骨格を用いた数値シミュレーションおよび実験データセットにおける提案手法の性能について述べる。
論文 参考訳(メタデータ) (2022-05-25T07:54:10Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Physics-Coupled Spatio-Temporal Active Learning for Dynamical Systems [15.923190628643681]
主な課題の1つは、認識されたデータストリームを生成する根本原因を推測することである。
機械学習ベースの予測モデルの成功は、モデルトレーニングに大量の注釈付きデータを必要とする。
提案するST-PCNNは, 実世界のデータセットと実世界のデータセットの両方において, 極めて少ないインスタンスで最適精度に収束することを示した。
論文 参考訳(メタデータ) (2021-08-11T18:05:55Z) - Complete CVDL Methodology for Investigating Hydrodynamic Instabilities [0.49873153106566565]
流体力学において、最も重要な研究分野の1つは流体力学の不安定性と異なる流れ状態におけるその進化である。
現在、そのような現象、すなわち分析モデル、実験、シミュレーションを理解するために3つの主要な手法が使用されている。
我々は、この研究の大部分が、Deep Learning(CVDL、Deep Computer-Vision)の分野における最近の画期的な進歩を用いて、分析されるべきであると主張している。
具体的には、最も代表的な不安定性であるRayleigh-Taylorの研究に焦点をあて、その振る舞いをシミュレートし、オープンソースの状態を作り出す。
論文 参考訳(メタデータ) (2020-04-03T13:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。