Quantum microwaves: stabilizing squeezed light by phase locking
- URL: http://arxiv.org/abs/2412.01499v1
- Date: Mon, 02 Dec 2024 13:51:26 GMT
- Title: Quantum microwaves: stabilizing squeezed light by phase locking
- Authors: Lukas Danner, Florian Höhe, Ciprian Padurariu, Joachim Ankerhold, Björn Kubala,
- Abstract summary: Josephson junctions coupled to microwave cavities are a versatile and simple source for microwaves with quantum characteristics.
A drawback of this method is that it suffers from bias voltage noise, which disturbs the phase of the junction.
We describe how adding a small ac reference signal either to the dc-bias or directly into the cavity can stabilize the system and counteract the sensitivity to noise.
- Score: 0.0
- License:
- Abstract: Bright sources of quantum microwave light are an important building block for various quantum technological applications. Josephson junctions coupled to microwave cavities are a particularly versatile and simple source for microwaves with quantum characteristics, such as different types of squeezing. Due to the inherent nonlinearity of the system, a pure dc-voltage bias can lead to the emission of correlated pairs of photons into a stripline resonator. However, a drawback of this method is that it suffers from bias voltage noise, which disturbs the phase of the junction and consequently destroys the coherence of the photons, severely limiting its applications. Here we describe how adding a small ac reference signal either to the dc-bias or directly into the cavity can stabilize the system and counteract the sensitivity to noise. We first consider the injection locking of a single-mode device, before turning to the more technologically relevant locking of two-mode squeezed states, where phase locking preserves the entanglement between photons. Finally, we describe locking by directly injecting a microwave into the cavity, which breaks the symmetry of the squeezing ellipse. In all cases, locking can mitigate the effects of voltage noise, and enable the use of squeezed states in quantum technological applications.
Related papers
- A cat qubit stabilization scheme using a voltage biased Josephson junction [0.0]
A two-to-one photon interaction can stabilize cat qubits, where bit-flip errors are exponentially suppressed.
This work investigates how the DC bias approach to Hamiltonian engineering can benefit cat qubits.
arXiv Detail & Related papers (2024-11-12T19:17:35Z) - Efficient decoupling of a non-linear qubit mode from its environment [0.9533143628888118]
We make use of the design flexibility of superconducting quantum circuits to form a multi-mode element with symmetry-protected modes.
The proposed circuit consists of three superconducting islands coupled to a central island via Josephson junctions.
We show that the coherence of the qubit is not limited by photon-induced dephasing when detuning the mediator mode from the readout resonator.
arXiv Detail & Related papers (2023-12-28T12:16:29Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Single-photon induced instabilities in a cavity electromechanical device [0.0]
nonlinear radiation-pressure interaction in Cavity-electromechanical systems could result in an unstable response of the mechanical resonator.
By using polariton modes formed by a strongly coupled flux-tunable transmon and a microwave cavity, here we demonstrate an electromechanical device and achieve a single-photon coupling rate.
Such an improvement in the single-photon coupling rate and the observations of microwave frequency combs at single-photon levels may have applications in the quantum control of the motional states and critical parametric sensing.
arXiv Detail & Related papers (2023-09-13T07:33:09Z) - Jaynes-Cummings interaction between low energy free-electrons and cavity
photons [0.571097144710995]
We propose a new approach to realize the Jaynes-Cummings Hamiltonian using low energy free-electrons coupled to dielectric microcavities.
Our approach utilizes quantum recoil, which causes a large detuning that inhibits the emission of multiple consecutive photons.
We show that this approach can be used for generation of single photons with unity efficiency and high fidelity.
arXiv Detail & Related papers (2023-02-03T07:06:51Z) - Resolving Fock states near the Kerr-free point of a superconducting
resonator [51.03394077656548]
We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Asymmetric Inductive eLement)
We have excited photons near this Kerr-free point and characterized the device using a transmon qubit.
arXiv Detail & Related papers (2022-10-18T09:55:58Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Microwave Amplification in a PT -symmetric-like Cavity Magnomechanical
System [9.994751756908546]
We propose a scheme that can generate tunable magnomechanically induced amplification in a double-cavity parity-time-(PT -) symmetric-like magnomechanical system.
The phenomenon might have potential applications in the field of quantum information processing and quantum optical devices.
arXiv Detail & Related papers (2021-12-03T05:40:56Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Parallel dark soliton pair in a bistable 2D exciton-polariton superfluid [47.187609203210705]
2D dark solitons are unstable and collapse into vortices due to snake instabilities.
We demonstrate that a pair of dark solitons can be formed in the wake of an obstacle in a polariton flow resonantly supported by a homogeneous laser beam.
arXiv Detail & Related papers (2020-03-25T13:52:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.