論文の概要: Review of Mathematical Optimization in Federated Learning
- arxiv url: http://arxiv.org/abs/2412.01630v1
- Date: Mon, 02 Dec 2024 15:45:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:41:30.742699
- Title: Review of Mathematical Optimization in Federated Learning
- Title(参考訳): フェデレートラーニングにおける数学的最適化の見直し
- Authors: Shusen Yang, Fangyuan Zhao, Zihao Zhou, Liang Shi, Xuebin Ren, Zongben Xu,
- Abstract要約: フェデレートラーニング(FL)は、応用数学と情報科学の両方において、学際的な研究分野として人気を博している。
FLは、さまざまなプライバシとシステムの制約を満たしながら、分散データセット上の対象関数の集約を協調的に最適化することを目的としている。
- 参考スコア(独自算出の注目度): 25.925946727673214
- License:
- Abstract: Federated Learning (FL) has been becoming a popular interdisciplinary research area in both applied mathematics and information sciences. Mathematically, FL aims to collaboratively optimize aggregate objective functions over distributed datasets while satisfying a variety of privacy and system constraints.Different from conventional distributed optimization methods, FL needs to address several specific issues (e.g., non-i.i.d. data distributions and differential private noises), which pose a set of new challenges in the problem formulation, algorithm design, and convergence analysis. In this paper, we will systematically review existing FL optimization research including their assumptions, formulations, methods, and theoretical results. Potential future directions are also discussed.
- Abstract(参考訳): フェデレートラーニング(FL)は、応用数学と情報科学の両方において、学際的な研究分野として人気を博している。
FLは,様々なプライバシやシステムの制約を満たすとともに,分散データセット上の集合的関数を協調的に最適化することを目的としており,従来の分散最適化手法と異なり,問題定式化やアルゴリズム設計,収束解析において新たな課題となるいくつかの特定の問題(例えば,データ分散や微分プライベートノイズなど)に対処する必要がある。
本稿では,その仮定,定式化,方法,理論的結果など,既存のFL最適化研究を体系的にレビューする。
今後の方向性についても論じる。
関連論文リスト
- Multi-Fidelity Methods for Optimization: A Survey [12.659229934111975]
MFO(Multi-fidelity Optimization)は、階層的フィデリティアプローチにより、高フィデリティ精度と計算効率のバランスをとる。
MFOの基本原則と方法論を深く掘り下げ、マルチフィデリティ・サロゲート・モデル、フィデリティ・マネジメント・ストラテジー、最適化・テクニックという3つの中核コンポーネントに注目します。
この調査では、機械学習、エンジニアリング設計の最適化、科学的発見など、いくつかの主要な領域にわたるMFOの多様な応用を強調している。
論文 参考訳(メタデータ) (2024-02-15T00:52:34Z) - UNIDEAL: Curriculum Knowledge Distillation Federated Learning [17.817181326740698]
フェデレートラーニング(FL)は、複数のクライアント間で協調学習を可能にする、有望なアプローチとして登場した。
本稿では,ドメイン横断シナリオの課題に対処するための新しいFLアルゴリズムであるUNIを提案する。
この結果から,UNIはモデル精度と通信効率の両面において優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2023-09-16T11:30:29Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
我々は、計算異種データの形式化と処理を可能にする新しい集約フレームワークを導入し、分析する。
提案するアグリゲーションアルゴリズムは理論的および実験的予測から広範囲に解析される。
論文 参考訳(メタデータ) (2023-07-12T16:28:21Z) - Federated Compositional Deep AUC Maximization [58.25078060952361]
本研究では,曲線(AUC)のスコアを直接最適化することにより,不均衡なデータに対する新しいフェデレート学習法を開発した。
私たちの知る限りでは、このような好ましい理論的な結果を達成した最初の作品である。
論文 参考訳(メタデータ) (2023-04-20T05:49:41Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
本研究は,デバイス上の分散フェデレーション学習(FL)システムにおいて,レイテンシとエネルギー消費の重み付け和を最小化する分散マルチリソース割り当て方式を提案する。
システム内の各モバイルデバイスは、指定された領域内でモデルトレーニングプロセスを実行し、それぞれパラメータの導出とアップロードを行うための計算と通信資源を割り当てる。
論文 参考訳(メタデータ) (2022-11-01T14:16:05Z) - A Field Guide to Federated Optimization [161.3779046812383]
フェデレートされた学習と分析は、分散化されたデータからモデル(あるいは統計)を協調的に学習するための分散アプローチである。
本稿では、フェデレート最適化アルゴリズムの定式化、設計、評価、分析に関する勧告とガイドラインを提供する。
論文 参考訳(メタデータ) (2021-07-14T18:09:08Z) - Decentralized Personalized Federated Learning for Min-Max Problems [79.61785798152529]
本稿では,より広い範囲の最適化問題を含むサドル点問題に対して,PFLを初めて検討した。
この問題に対処するための新しいアルゴリズムを提案し、滑らかな(強く)凸-(強く)凹点問題を理論的に解析する。
両線形問題に対する数値実験と, 対向雑音を有するニューラルネットワークは, 提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2021-06-14T10:36:25Z) - Hybrid Federated Learning: Algorithms and Implementation [61.0640216394349]
Federated Learning(FL)は、分散データセットとプライベートデータセットを扱う分散機械学習パラダイムである。
ハイブリッドFLのためのモデルマッチングに基づく新しい問題定式化を提案する。
次に,グローバルモデルとローカルモデルを協調して学習し,完全かつ部分的な特徴量を扱う効率的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-22T23:56:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。