PassionNet: An Innovative Framework for Duplicate and Conflicting Requirements Identification
- URL: http://arxiv.org/abs/2412.01657v1
- Date: Mon, 02 Dec 2024 16:05:38 GMT
- Title: PassionNet: An Innovative Framework for Duplicate and Conflicting Requirements Identification
- Authors: Summra Saleem, Muhammad Nabeel Asim, Andreas Dengel,
- Abstract summary: Early detection and resolution of duplicate and conflicting requirements can significantly enhance project efficiency and overall software quality.
Researchers have developed various computational predictors by leveraging Artificial Intelligence (AI) potential to detect duplicate and conflicting requirements.
This research offers a comprehensive framework that facilitate development of 3 different types of predictive pipelines.
- Score: 5.463986763897077
- License:
- Abstract: Early detection and resolution of duplicate and conflicting requirements can significantly enhance project efficiency and overall software quality. Researchers have developed various computational predictors by leveraging Artificial Intelligence (AI) potential to detect duplicate and conflicting requirements. However, these predictors lack in performance and requires more effective approaches to empower software development processes. Following the need of a unique predictor that can accurately identify duplicate and conflicting requirements, this research offers a comprehensive framework that facilitate development of 3 different types of predictive pipelines: language models based, multi-model similarity knowledge-driven and large language models (LLMs) context + multi-model similarity knowledge-driven. Within first type predictive pipelines landscape, framework facilitates conflicting/duplicate requirements identification by leveraging 8 distinct types of LLMs. In second type, framework supports development of predictive pipelines that leverage multi-scale and multi-model similarity knowledge, ranging from traditional similarity computation methods to advanced similarity vectors generated by LLMs. In the third type, the framework synthesizes predictive pipelines by integrating contextual insights from LLMs with multi-model similarity knowledge. Across 6 public benchmark datasets, extensive testing of 760 distinct predictive pipelines demonstrates that hybrid predictive pipelines consistently outperforms other two types predictive pipelines in accurately identifying duplicate and conflicting requirements. This predictive pipeline outperformed existing state-of-the-art predictors performance with an overall performance margin of 13% in terms of F1-score
Related papers
- Bidirectional Awareness Induction in Autoregressive Seq2Seq Models [47.82947878753809]
Bidirectional Awareness Induction (BAI) is a training method that leverages a subset of elements in the network, the Pivots, to perform bidirectional learning without breaking the autoregressive constraints.
In particular, we observed an increase of up to 2.4 CIDEr in Image-Captioning, 4.96 BLEU in Neural Machine Translation, and 1.16 ROUGE in Text Summarization compared to the respective baselines.
arXiv Detail & Related papers (2024-08-25T23:46:35Z) - A Refreshed Similarity-based Upsampler for Direct High-Ratio Feature Upsampling [54.05517338122698]
A popular similarity-based feature upsampling pipeline has been proposed, which utilizes a high-resolution feature as guidance.
We propose an explicitly controllable query-key feature alignment from both semantic-aware and detail-aware perspectives.
We develop a fine-grained neighbor selection strategy on HR features, which is simple yet effective for alleviating mosaic artifacts.
arXiv Detail & Related papers (2024-07-02T14:12:21Z) - Sample Complexity Characterization for Linear Contextual MDPs [67.79455646673762]
Contextual decision processes (CMDPs) describe a class of reinforcement learning problems in which the transition kernels and reward functions can change over time with different MDPs indexed by a context variable.
CMDPs serve as an important framework to model many real-world applications with time-varying environments.
We study CMDPs under two linear function approximation models: Model I with context-varying representations and common linear weights for all contexts; and Model II with common representations for all contexts and context-varying linear weights.
arXiv Detail & Related papers (2024-02-05T03:25:04Z) - RGM: A Robust Generalizable Matching Model [49.60975442871967]
We propose a deep model for sparse and dense matching, termed RGM (Robust Generalist Matching)
To narrow the gap between synthetic training samples and real-world scenarios, we build a new, large-scale dataset with sparse correspondence ground truth.
We are able to mix up various dense and sparse matching datasets, significantly improving the training diversity.
arXiv Detail & Related papers (2023-10-18T07:30:08Z) - Prototype-based Aleatoric Uncertainty Quantification for Cross-modal
Retrieval [139.21955930418815]
Cross-modal Retrieval methods build similarity relations between vision and language modalities by jointly learning a common representation space.
However, the predictions are often unreliable due to the Aleatoric uncertainty, which is induced by low-quality data, e.g., corrupt images, fast-paced videos, and non-detailed texts.
We propose a novel Prototype-based Aleatoric Uncertainty Quantification (PAU) framework to provide trustworthy predictions by quantifying the uncertainty arisen from the inherent data ambiguity.
arXiv Detail & Related papers (2023-09-29T09:41:19Z) - An Empirical Study of Multimodal Model Merging [148.48412442848795]
Model merging is a technique that fuses multiple models trained on different tasks to generate a multi-task solution.
We conduct our study for a novel goal where we can merge vision, language, and cross-modal transformers of a modality-specific architecture.
We propose two metrics that assess the distance between weights to be merged and can serve as an indicator of the merging outcomes.
arXiv Detail & Related papers (2023-04-28T15:43:21Z) - Transfer learning for conflict and duplicate detection in software requirement pairs [0.5359378066251386]
Consistent and holistic expression of software requirements is important for the success of software projects.
In this study, we aim to enhance the efficiency of the software development processes by automatically identifying conflicting and duplicate software requirement specifications.
We design a novel transformers-based architecture, SR-BERT, which incorporates Sentence-BERT and Bi-encoders for the conflict and duplicate identification task.
arXiv Detail & Related papers (2023-01-09T22:47:12Z) - Don't Be So Sure! Boosting ASR Decoding via Confidence Relaxation [7.056222499095849]
beam search seeks the transcript with the greatest likelihood computed using the predicted distribution.
We show that recently proposed Self-Supervised Learning (SSL)-based ASR models tend to yield exceptionally confident predictions.
We propose a decoding procedure that improves the performance of fine-tuned ASR models.
arXiv Detail & Related papers (2022-12-27T06:42:26Z) - Learning High-Order Interactions via Targeted Pattern Search [0.6198237241838558]
We present a novel algorithm, Learning high-order Interactions via targeted Pattern Search (LIPS)
LIPS selects interaction terms of varying order to include in a Logistic Regression model.
We prove its wide applicability to real-life research scenarios, showing that it outperforms a benchmark state-of-the-art algorithm.
arXiv Detail & Related papers (2021-02-23T11:13:22Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - Two-stage short-term wind power forecasting algorithm using different
feature-learning models [8.41684803105392]
Two-stage ensemble-based forecasting methods have been studied extensively in the wind power forecasting field.
Deep learning-based wind power forecasting studies have not investigated two aspects.
In the first stage, different learning structures considering multiple inputs and multiple outputs have not been discussed.
In the second stage, the model extrapolation issue has not been investigated.
arXiv Detail & Related papers (2020-05-31T02:13:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.