Probabilistic Forecasting with Coherent Aggregation
- URL: http://arxiv.org/abs/2307.09797v3
- Date: Mon, 04 Nov 2024 22:25:41 GMT
- Title: Probabilistic Forecasting with Coherent Aggregation
- Authors: Kin G. Olivares, Geoffrey NĂ©giar, Ruijun Ma, O. Nangba Meetei, Mengfei Cao, Michael W. Mahoney,
- Abstract summary: We augment an MQForecaster neural network architecture with a novel deep Gaussian factor forecasting model that achieves coherence by construction.
In a comparison to state-of-the-art coherent forecasting methods, DeepCoFactor achieves significant improvements in scaled CRPS forecast accuracy, with average gains of 15%.
- Score: 42.215158938066054
- License:
- Abstract: Obtaining accurate probabilistic forecasts is an important operational challenge in many applications, like energy management, climate forecast, supply chain planning, and resource allocation. In many of these applications, there is a natural hierarchical structure over the forecasted quantities; and forecasting systems that adhere to this hierarchical structure are said to be coherent. Furthermore, operational planning benefits from accuracy at all levels of the aggregation hierarchy. Building accurate and coherent forecasting systems, however, is challenging: classic multivariate time series tools and neural network methods are still being adapted for this purpose. In this paper, we augment an MQForecaster neural network architecture with a novel deep Gaussian factor forecasting model that achieves coherence by construction, yielding a method we call the Deep Coherent Factor Model Neural Network (DeepCoFactor) model. DeepCoFactor generates samples that can be differentiated with respect to the model parameters, allowing optimization on various sample-based learning objectives that align with the forecasting system's goals, including quantile loss and the scaled Continuous Ranked Probability Score (CRPS). In a comparison to state-of-the-art coherent forecasting methods, DeepCoFactor achieves significant improvements in scaled CRPS forecast accuracy, with average gains of 15%, as measured on six publicly-available forecasting datasets.
Related papers
- DeepHGNN: Study of Graph Neural Network based Forecasting Methods for Hierarchically Related Multivariate Time Series [5.029860184826624]
This paper introduces a novel Hierarchical GNN (DeepHGNN) framework, explicitly designed for forecasting in complex hierarchical structures.
DeepHGNN ensures forecast accuracy and coherence across various hierarchical levels while sharing signals across them.
Our comprehensive evaluation set against several state-of-the-art models confirm the superior performance of DeepHGNN.
arXiv Detail & Related papers (2024-05-29T02:06:17Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Quantifying uncertainty for deep learning based forecasting and
flow-reconstruction using neural architecture search ensembles [0.8258451067861933]
We present an automated approach to deep neural network (DNN) discovery and demonstrate how this may also be utilized for ensemble-based uncertainty quantification.
We highlight how the proposed method not only discovers high-performing neural network ensembles for our tasks, but also quantifies uncertainty seamlessly.
We demonstrate the feasibility of this framework for two tasks - forecasting from historical data and flow reconstruction from sparse sensors for the sea-surface temperature.
arXiv Detail & Related papers (2023-02-20T03:57:06Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - Distributional Gradient Boosting Machines [77.34726150561087]
Our framework is based on XGBoost and LightGBM.
We show that our framework achieves state-of-the-art forecast accuracy.
arXiv Detail & Related papers (2022-04-02T06:32:19Z) - A Bayesian Deep Learning Approach to Near-Term Climate Prediction [12.870804083819603]
We pursue a complementary machine-learning-based approach to climate prediction.
In particular, we find that a feedforward convolutional network with a Densenet architecture is able to outperform a convolutional LSTM in terms of predictive skill.
arXiv Detail & Related papers (2022-02-23T00:28:36Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z) - A machine learning approach for forecasting hierarchical time series [4.157415305926584]
We propose a machine learning approach for forecasting hierarchical time series.
Forecast reconciliation is the process of adjusting forecasts to make them coherent across the hierarchy.
We exploit the ability of a deep neural network to extract information capturing the structure of the hierarchy.
arXiv Detail & Related papers (2020-05-31T22:26:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.