BroadTrack: Broadcast Camera Tracking for Soccer
- URL: http://arxiv.org/abs/2412.01721v1
- Date: Mon, 02 Dec 2024 17:10:52 GMT
- Title: BroadTrack: Broadcast Camera Tracking for Soccer
- Authors: Floriane Magera, Thomas Hoyoux, Olivier Barnich, Marc Van Droogenbroeck,
- Abstract summary: Camera calibration and localization enables many applications in the context of soccer broadcasting.
We present a system capable of addressing the task of soccer broadcast camera tracking efficiently, robustly, and accurately.
Our tracking system, BroadTrack, halves the mean reprojection error rate and gains more than 15% in terms of Jaccard index for camera calibration on the SoccerNet dataset.
- Score: 6.011159943695013
- License:
- Abstract: Camera calibration and localization, sometimes simply named camera calibration, enables many applications in the context of soccer broadcasting, for instance regarding the interpretation and analysis of the game, or the insertion of augmented reality graphics for storytelling or refereeing purposes. To contribute to such applications, the research community has typically focused on single-view calibration methods, leveraging the near-omnipresence of soccer field markings in wide-angle broadcast views, but leaving all temporal aspects, if considered at all, to general-purpose tracking or filtering techniques. Only a few contributions have been made to leverage any domain-specific knowledge for this tracking task, and, as a result, there lacks a truly performant and off-the-shelf camera tracking system tailored for soccer broadcasting, specifically for elevated tripod-mounted cameras around the stadium. In this work, we present such a system capable of addressing the task of soccer broadcast camera tracking efficiently, robustly, and accurately, outperforming by far the most precise methods of the state-of-the-art. By combining the available open-source soccer field detectors with carefully designed camera and tripod models, our tracking system, BroadTrack, halves the mean reprojection error rate and gains more than 15% in terms of Jaccard index for camera calibration on the SoccerNet dataset. Furthermore, as the SoccerNet dataset videos are relatively short (30 seconds), we also present qualitative results on a 20-minute broadcast clip to showcase the robustness and the soundness of our system.
Related papers
- Enhancing Soccer Camera Calibration Through Keypoint Exploitation [0.0]
This paper introduces a multi-stage pipeline that addresses the challenge of obtaining a sufficient number of high-quality point pairs.
Our approach significantly increases the number of usable points for calibration by exploiting line-line and line-conic intersections, points on the conics, and other geometric features.
We evaluated our approach on the largest football broadcast camera calibration dataset available, and secured the top position in the SoccerNet Camera Challenge 2023.
arXiv Detail & Related papers (2024-10-09T20:01:14Z) - BlinkTrack: Feature Tracking over 100 FPS via Events and Images [50.98675227695814]
We propose a novel framework, BlinkTrack, which integrates event data with RGB images for high-frequency feature tracking.
Our method extends the traditional Kalman filter into a learning-based framework, utilizing differentiable Kalman filters in both event and image branches.
Experimental results indicate that BlinkTrack significantly outperforms existing event-based methods.
arXiv Detail & Related papers (2024-09-26T15:54:18Z) - A Universal Protocol to Benchmark Camera Calibration for Sports [6.011159943695013]
We present a new benchmarking protocol for camera calibration in sports analytics.
We show that our protocol provides fairer evaluations of camera calibration methods.
We hope to pave the way for a new stage in camera calibration for sports applications with high accuracy standards.
arXiv Detail & Related papers (2024-04-15T14:03:31Z) - PnLCalib: Sports Field Registration via Points and Lines Optimization [16.278222277579655]
Camera calibration in broadcast sports videos presents numerous challenges for accurate sports field registration.
Traditional search-based methods depend on initial camera pose estimates, which can struggle in non-standard positions.
We propose an optimization-based calibration pipeline that leverages a 3D soccer field model and a predefined set of keypoints to overcome these limitations.
arXiv Detail & Related papers (2024-04-12T11:15:15Z) - Graph-Based Multi-Camera Soccer Player Tracker [1.6244541005112743]
The paper presents a multi-camera tracking method intended for tracking soccer players in long shot video recordings from multiple calibrated cameras installed around the playing field.
The large distance to the camera makes it difficult to visually distinguish individual players, which adversely affects the performance of traditional solutions.
Our method focuses on individual player dynamics and interactions between neighborhood players to improve tracking performance.
arXiv Detail & Related papers (2022-11-03T20:01:48Z) - Scalable and Real-time Multi-Camera Vehicle Detection,
Re-Identification, and Tracking [58.95210121654722]
We propose a real-time city-scale multi-camera vehicle tracking system that handles real-world, low-resolution CCTV instead of idealized and curated video streams.
Our method is ranked among the top five performers on the public leaderboard.
arXiv Detail & Related papers (2022-04-15T12:47:01Z) - SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in
Soccer Videos [62.686484228479095]
We propose a novel dataset for multiple object tracking composed of 200 sequences of 30s each.
The dataset is fully annotated with bounding boxes and tracklet IDs.
Our analysis shows that multiple player, referee and ball tracking in soccer videos is far from being solved.
arXiv Detail & Related papers (2022-04-14T12:22:12Z) - Smart Director: An Event-Driven Directing System for Live Broadcasting [110.30675947733167]
Smart Director aims at mimicking the typical human-in-the-loop broadcasting process to automatically create near-professional broadcasting programs in real-time.
Our system is the first end-to-end automated directing system for multi-camera sports broadcasting.
arXiv Detail & Related papers (2022-01-11T16:14:41Z) - Camera Calibration and Player Localization in SoccerNet-v2 and
Investigation of their Representations for Action Spotting [61.92132798351982]
We distill a powerful commercial calibration tool in a recent neural network architecture on the large-scale SoccerNet dataset.
We leverage it to provide 3 ways of representing the calibration results along with player localization.
We exploit those representations within the current best architecture for the action spotting task of SoccerNet-v2.
arXiv Detail & Related papers (2021-04-19T14:21:05Z) - SoccerNet-v2: A Dataset and Benchmarks for Holistic Understanding of
Broadcast Soccer Videos [71.72665910128975]
SoccerNet-v2 is a novel large-scale corpus of manual annotations for the SoccerNet video dataset.
We release around 300k annotations within SoccerNet's 500 untrimmed broadcast soccer videos.
We extend current tasks in the realm of soccer to include action spotting, camera shot segmentation with boundary detection.
arXiv Detail & Related papers (2020-11-26T16:10:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.