論文の概要: Random Tree Model of Meaningful Memory
- arxiv url: http://arxiv.org/abs/2412.01806v1
- Date: Mon, 02 Dec 2024 18:50:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:49:34.622617
- Title: Random Tree Model of Meaningful Memory
- Title(参考訳): 意味記憶のランダムツリーモデル
- Authors: Weishun Zhong, Tankut Can, Antonis Georgiou, Ilya Shnayderman, Mikhail Katkov, Misha Tsodyks,
- Abstract要約: 本稿では,各ノードが木葉の圧縮された表現であるキーポイントの階層として物語を表現するために,ランダムツリーの統計的アンサンブルを導入する。
平均リコール長は物語長に比例して増加し,各リコール文では個人がより長いナラティブセグメントを要約するようになっている。
- 参考スコア(独自算出の注目度): 2.412688778659678
- License:
- Abstract: Traditional studies of memory for meaningful narratives focus on specific stories and their semantic structures but do not address common quantitative features of recall across different narratives. We introduce a statistical ensemble of random trees to represent narratives as hierarchies of key points, where each node is a compressed representation of its descendant leaves, which are the original narrative segments. Recall is modeled as constrained by working memory capacity from this hierarchical structure. Our analytical solution aligns with observations from large-scale narrative recall experiments. Specifically, our model explains that (1) average recall length increases sublinearly with narrative length, and (2) individuals summarize increasingly longer narrative segments in each recall sentence. Additionally, the theory predicts that for sufficiently long narratives, a universal, scale-invariant limit emerges, where the fraction of a narrative summarized by a single recall sentence follows a distribution independent of narrative length.
- Abstract(参考訳): 意味のある物語の記憶の伝統的な研究は、特定の物語とその意味構造に焦点をあてるが、異なる物語をまたいだ記憶の一般的な量的特徴には対処しない。
本稿では,各ノードが木葉の圧縮表現であるキーポイントの階層として物語を表現するために,ランダムツリーの統計的アンサンブルを導入する。
リコールは、この階層構造から動作するメモリ容量によって制約されるようにモデル化される。
我々の分析解は、大規模な物語記憶実験の観察と一致している。
具体的には,(1) 平均回想長は物語長に比例して増加し,(2) 個人は各回想文においてより長い回想節を要約する。
さらに、この理論は、十分な長い物語において、普遍的でスケール不変な制限が出現し、単一のリコール文で要約された物語の断片は、物語の長さとは無関係な分布に従うと予測している。
関連論文リスト
- Fine-Grained Modeling of Narrative Context: A Coherence Perspective via Retrospective Questions [48.18584733906447]
この研究は、物語の中の個々の通路が孤立するよりも密接な関係にある傾向があるという特徴から生まれた、物語理解のためのオリジナルで実践的なパラダイムを取り入れたものである。
本稿では,タスク非依存のコヒーレンス依存を明示的に表現したNarCoというグラフを定式化することにより,物語コンテキストのきめ細かいモデリングを提案する。
論文 参考訳(メタデータ) (2024-02-21T06:14:04Z) - Large-scale study of human memory for meaningful narratives [0.0]
本研究では,大規模リコールおよび認識メモリ実験のための自然言語モデル(LLM)を用いて,自然主義的物語刺激を設計するパイプラインを開発する。
我々は,多数の参加者とともにオンライン記憶実験を行い,異なるサイズの物語の認識・記憶データを収集した。
論文 参考訳(メタデータ) (2023-11-08T15:11:57Z) - NarraSum: A Large-Scale Dataset for Abstractive Narrative Summarization [26.80378373420446]
NarraSumは大規模な物語要約データセットである。
これには122Kの物語文書が含まれており、様々なジャンルの映画やテレビドラマのプロット記述や、それに対応する抽象的な要約から集められている。
実験の結果,NarraSumにおける人間と最先端の要約モデルの間には大きなパフォーマンスギャップがあることが判明した。
論文 参考訳(メタデータ) (2022-12-02T22:51:51Z) - A Focused Study on Sequence Length for Dialogue Summarization [68.73335643440957]
既存のモデルの出力とそれに対応する人間の参照の長さの差を解析する。
モデル設定を比較し,要約長予測のための有能な特徴を同定する。
第3に,要約長を十分に組み込むことができれば,既存のモデルに顕著な改善がもたらされることを示す。
論文 参考訳(メタデータ) (2022-09-24T02:49:48Z) - Computational Lens on Cognition: Study Of Autobiographical Versus
Imagined Stories With Large-Scale Language Models [95.88620740809004]
GPT-3を用いた自伝的物語と想像的物語における出来事の物語の流れの相違について検討した。
想像された物語は自伝的物語よりも逐次性が高いことがわかった。
想像された物語と比較すると、自伝的な物語は、最初の人物に関連するより具体的な言葉と単語を含んでいる。
論文 参考訳(メタデータ) (2022-01-07T20:10:47Z) - Paragraph-level Commonsense Transformers with Recurrent Memory [77.4133779538797]
物語からコヒーレントなコモンセンス推論を生成するために,段落レベルの情報を含む談話認識モデルを訓練する。
以上の結果から,PARA-COMETは文レベルのベースライン,特にコヒーレントかつ新規な推論に優れていた。
論文 参考訳(メタデータ) (2020-10-04T05:24:12Z) - Screenplay Summarization Using Latent Narrative Structure [78.45316339164133]
本稿では,物語の基盤となる構造を一般教師なし・教師付き抽出要約モデルに明示的に組み込むことを提案する。
重要な物語イベント(転回点)の観点で物語構造を定式化し、脚本を要約するために潜伏状態として扱う。
シーンレベルの要約ラベルを付加したテレビ画面のCSIコーパスの実験結果から,潜角点がCSIエピソードの重要な側面と相関していることが判明した。
論文 参考訳(メタデータ) (2020-04-27T11:54:19Z) - The Shmoop Corpus: A Dataset of Stories with Loosely Aligned Summaries [72.48439126769627]
個々の章ごとに詳細なマルチパラグラフの要約と組み合わせた231ストーリーのデータセットであるShmoop Corpusを紹介します。
コーパスから、クローズ形式の質問応答や抽象的要約の簡易な形式を含む共通のNLPタスクのセットを構築する。
このコーパスのユニークな構造は、マシンストーリーの理解をより親しみやすいものにするための重要な基盤となると信じている。
論文 参考訳(メタデータ) (2019-12-30T21:03:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。