COSMOS: Cross-Modality Self-Distillation for Vision Language Pre-training
- URL: http://arxiv.org/abs/2412.01814v1
- Date: Mon, 02 Dec 2024 18:56:06 GMT
- Title: COSMOS: Cross-Modality Self-Distillation for Vision Language Pre-training
- Authors: Sanghwan Kim, Rui Xiao, Mariana-Iuliana Georgescu, Stephan Alaniz, Zeynep Akata,
- Abstract summary: We propose COSMOS: CrOSs-MOdality Self-distillation for vision-language pre-training.
It integrates a novel text-cropping strategy and cross-attention module into a self-supervised learning framework.
It consistently outperforms previous strong baselines on various zero-shot downstream tasks.
- Score: 49.2684130383925
- License:
- Abstract: Vision-Language Models (VLMs) trained with contrastive loss have achieved significant advancements in various vision and language tasks. However, the global nature of contrastive loss makes VLMs focus predominantly on foreground objects, neglecting other crucial information in the image, which limits their effectiveness in downstream tasks. To address these challenges, we propose COSMOS: CrOSs-MOdality Self-distillation for vision-language pre-training that integrates a novel text-cropping strategy and cross-attention module into a self-supervised learning framework. We create global and local views of images and texts (i.e., multi-modal augmentations), which are essential for self-distillation in VLMs. We further introduce a cross-attention module, enabling COSMOS to learn comprehensive cross-modal representations optimized via a cross-modality self-distillation loss. COSMOS consistently outperforms previous strong baselines on various zero-shot downstream tasks, including retrieval, classification, and semantic segmentation. Additionally, it surpasses CLIP-based models trained on larger datasets in visual perception and contextual understanding tasks.
Related papers
- Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
This paper introduces a scalable test-bed to assess the capabilities of IT-LVLMs on fundamental computer vision tasks.
MERLIM contains over 300K image-question pairs and has a strong focus on detecting cross-modal "hallucination" events in IT-LVLMs.
arXiv Detail & Related papers (2023-12-03T16:39:36Z) - EVE: Efficient Vision-Language Pre-training with Masked Prediction and
Modality-Aware MoE [66.48689706116808]
Efficient Vision-languagE is one unified multimodal Transformer pre-trained solely by one unified pre-training task.
Eve encodes both vision and language within a shared Transformer network integrated with modality-aware sparse Mixture-of-Experts.
Eve achieves state-of-the-art performance on various vision-language downstream tasks, including visual question answering, visual reasoning, and image-text retrieval.
arXiv Detail & Related papers (2023-08-23T07:36:30Z) - UniFine: A Unified and Fine-grained Approach for Zero-shot
Vision-Language Understanding [84.83494254263138]
We propose a unified framework to take advantage of the fine-grained information for zero-shot vision-language learning.
Our framework outperforms former zero-shot methods on VQA and achieves substantial improvement on SNLI-VE and VCR.
arXiv Detail & Related papers (2023-07-03T09:03:12Z) - Multi-Modal Representation Learning with Text-Driven Soft Masks [48.19806080407593]
We propose a visual-linguistic representation learning approach within a self-supervised learning framework.
We generate diverse features for the image-text matching (ITM) task via soft-masking the regions in an image.
We identify the relevant regions to each word by computing the word-conditional visual attention using multi-modal encoder.
arXiv Detail & Related papers (2023-04-03T05:07:49Z) - Seeing What You Miss: Vision-Language Pre-training with Semantic
Completion Learning [22.464424641734652]
Cross-modal alignment is essential for vision-language pre-training models.
We propose a novel Semantic Completion Learning task to facilitate global-to-local alignment.
We also present a flexible vision encoder, which enables our model to perform image-text and video-text multimodal tasks simultaneously.
arXiv Detail & Related papers (2022-11-24T06:39:16Z) - VLMAE: Vision-Language Masked Autoencoder [21.97700040013084]
We propose a vision-language masked autoencoder framework (VLMAE) for vision-language pre-training.
VLMAE employs visual generative learning, facilitating the model to acquire fine-grained and unbiased features.
arXiv Detail & Related papers (2022-08-19T14:39:18Z) - Fine-Grained Semantically Aligned Vision-Language Pre-Training [151.7372197904064]
Large-scale vision-language pre-training has shown impressive advances in a wide range of downstream tasks.
Existing methods mainly model the cross-modal alignment by the similarity of the global representations of images and texts.
We introduce LO, a fine-grained semantically aLigned visiOn-langUage PrE-training framework, which learns fine-grained semantic alignment from the novel perspective of game-theoretic interactions.
arXiv Detail & Related papers (2022-08-04T07:51:48Z) - mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal
Skip-connections [104.14624185375897]
mPLUG is a new vision-language foundation model for both cross-modal understanding and generation.
It achieves state-of-the-art results on a wide range of vision-language downstream tasks, such as image captioning, image-text retrieval, visual grounding and visual question answering.
arXiv Detail & Related papers (2022-05-24T11:52:06Z) - KD-VLP: Improving End-to-End Vision-and-Language Pretraining with Object
Knowledge Distillation [42.01427946204401]
Self-supervised vision-and-language pretraining aims to learn transferable multi-modal representations from large-scale image-text data.
We propose an object-aware end-to-end QF framework, which directly feeds image grid features from CNNs into the Transformer and learns the multi-modal representations jointly.
To achieve that, we design two novel pretext tasks by taking object features and their semantic labels from external detectors as supervision.
arXiv Detail & Related papers (2021-09-22T03:38:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.