Contrasting Intra-Modal and Ranking Cross-Modal Hard Negatives to Enhance Visio-Linguistic Compositional Understanding
- URL: http://arxiv.org/abs/2306.08832v4
- Date: Thu, 25 Apr 2024 15:24:11 GMT
- Title: Contrasting Intra-Modal and Ranking Cross-Modal Hard Negatives to Enhance Visio-Linguistic Compositional Understanding
- Authors: Le Zhang, Rabiul Awal, Aishwarya Agrawal,
- Abstract summary: We introduce a simple and effective method to improve compositional reasoning in Vision-Language Models (VLMs)
Our method better leverages available datasets by refining and expanding the standard image-text contrastive learning framework.
When integrated with CLIP, our technique yields notable improvement over state-of-the-art baselines.
- Score: 6.798129852396113
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision-Language Models (VLMs), such as CLIP, exhibit strong image-text comprehension abilities, facilitating advances in several downstream tasks such as zero-shot image classification, image-text retrieval, and text-to-image generation. However, the compositional reasoning abilities of existing VLMs remains subpar. The root of this limitation lies in the inadequate alignment between the images and captions in the pretraining datasets. Additionally, the current contrastive learning objective fails to focus on fine-grained grounding components like relations, actions, and attributes, resulting in "bag-of-words" representations. We introduce a simple and effective method to improve compositional reasoning in VLMs. Our method better leverages available datasets by refining and expanding the standard image-text contrastive learning framework. Our approach does not require specific annotations and does not incur extra parameters. When integrated with CLIP, our technique yields notable improvement over state-of-the-art baselines across five vision-language compositional benchmarks. We open-source our code at https://github.com/lezhang7/Enhance-FineGrained.
Related papers
- TripletCLIP: Improving Compositional Reasoning of CLIP via Synthetic Vision-Language Negatives [65.82577305915643]
Contrastive Language-Image Pretraining (CLIP) models maximize the mutual information between text and visual modalities to learn representations.
We show that generating hard'' negative captions via in-context learning and corresponding negative images with text-to-image generators offers a solution.
We demonstrate that our method, named TripletCLIP, enhances the compositional capabilities of CLIP, resulting in an absolute improvement of over 9% on the SugarCrepe benchmark.
arXiv Detail & Related papers (2024-11-04T19:24:59Z) - ComAlign: Compositional Alignment in Vision-Language Models [2.3250871476216814]
We introduce Compositional Alignment (ComAlign) to discover more exact correspondence of text and image components.
Our methodology emphasizes that the compositional structure extracted from the text modality must also be retained in the image modality.
We train a lightweight network lying on top of existing visual and language encoders using a small dataset.
arXiv Detail & Related papers (2024-09-12T16:46:41Z) - Improving Cross-modal Alignment with Synthetic Pairs for Text-only Image
Captioning [13.357749288588039]
Previous works leverage the CLIP's cross-modal association ability for image captioning, relying solely on textual information under unsupervised settings.
This paper proposes a novel method to address these issues by incorporating synthetic image-text pairs.
A pre-trained text-to-image model is deployed to obtain images that correspond to textual data, and the pseudo features of generated images are optimized toward the real ones in the CLIP embedding space.
arXiv Detail & Related papers (2023-12-14T12:39:29Z) - Augment the Pairs: Semantics-Preserving Image-Caption Pair Augmentation
for Grounding-Based Vision and Language Models [16.4010094165575]
We propose a robust phrase grounding model trained with text-conditioned and text-unconditioned data augmentations.
Inspired by recent masked signal reconstruction, we propose to use pixel-level masking as a novel form of data augmentation.
Our method demonstrates advanced performance over the state-of-the-arts with various metrics.
arXiv Detail & Related papers (2023-11-05T01:14:02Z) - Advancing Visual Grounding with Scene Knowledge: Benchmark and Method [74.72663425217522]
Visual grounding (VG) aims to establish fine-grained alignment between vision and language.
Most existing VG datasets are constructed using simple description texts.
We propose a novel benchmark of underlineScene underlineKnowledge-guided underlineVisual underlineGrounding.
arXiv Detail & Related papers (2023-07-21T13:06:02Z) - Coarse-to-Fine Contrastive Learning in Image-Text-Graph Space for
Improved Vision-Language Compositionality [50.48859793121308]
Contrastively trained vision-language models have achieved remarkable progress in vision and language representation learning.
Recent research has highlighted severe limitations in their ability to perform compositional reasoning over objects, attributes, and relations.
arXiv Detail & Related papers (2023-05-23T08:28:38Z) - Fine-Grained Semantically Aligned Vision-Language Pre-Training [151.7372197904064]
Large-scale vision-language pre-training has shown impressive advances in a wide range of downstream tasks.
Existing methods mainly model the cross-modal alignment by the similarity of the global representations of images and texts.
We introduce LO, a fine-grained semantically aLigned visiOn-langUage PrE-training framework, which learns fine-grained semantic alignment from the novel perspective of game-theoretic interactions.
arXiv Detail & Related papers (2022-08-04T07:51:48Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-11-30T07:29:08Z) - Scaling Up Visual and Vision-Language Representation Learning With Noisy
Text Supervision [57.031588264841]
We leverage a noisy dataset of over one billion image alt-text pairs, obtained without expensive filtering or post-processing steps.
A simple dual-encoder architecture learns to align visual and language representations of the image and text pairs using a contrastive loss.
We show that the scale of our corpus can make up for its noise and leads to state-of-the-art representations even with such a simple learning scheme.
arXiv Detail & Related papers (2021-02-11T10:08:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.