論文の概要: COSMOS: Cross-Modality Self-Distillation for Vision Language Pre-training
- arxiv url: http://arxiv.org/abs/2412.01814v2
- Date: Wed, 26 Mar 2025 16:07:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:19:18.097798
- Title: COSMOS: Cross-Modality Self-Distillation for Vision Language Pre-training
- Title(参考訳): COSMOS:ビジョン言語事前学習のためのクロスモーダル自己蒸留
- Authors: Sanghwan Kim, Rui Xiao, Mariana-Iuliana Georgescu, Stephan Alaniz, Zeynep Akata,
- Abstract要約: 視覚言語事前学習のためのCOSMOS: CrOSs-modality Self-distillationを提案する。
新たなテキストクロッピング戦略とクロスアテンションモジュールを自己教師型学習フレームワークに統合する。
さまざまなゼロショットダウンストリームタスクにおいて、以前の強いベースラインを一貫して上回ります。
- 参考スコア(独自算出の注目度): 49.2684130383925
- License:
- Abstract: Vision-Language Models (VLMs) trained with contrastive loss have achieved significant advancements in various vision and language tasks. However, the global nature of the contrastive loss makes VLMs focus predominantly on foreground objects, neglecting other crucial information in the image, which limits their effectiveness in downstream tasks. To address these challenges, we propose COSMOS: CrOSs-MOdality Self-distillation for vision-language pre-training that integrates a novel text-cropping strategy and cross-attention module into a self-supervised learning framework. We create global and local views of images and texts (i.e., multi-modal augmentations), which are essential for self-distillation in VLMs. We further introduce a cross-attention module, enabling COSMOS to learn comprehensive cross-modal representations optimized via a cross-modality self-distillation loss. COSMOS consistently outperforms previous strong baselines on various zero-shot downstream tasks, including retrieval, classification, and semantic segmentation. Additionally, it surpasses CLIP-based models trained on larger datasets in visual perception and contextual understanding tasks. Code is available at https://github.com/ExplainableML/cosmos.
- Abstract(参考訳): 視覚・言語モデル (VLM) は、視覚や言語タスクにおいて大きな進歩を遂げている。
しかしながら、対照的な損失のグローバルな性質は、VLMを主に前景オブジェクトに焦点を合わせ、画像内の他の重要な情報を無視し、下流タスクにおけるそれらの有効性を制限する。
これらの課題に対処するため, CrOSs-Modality Self-distillation for vision- language pre-trainingは,新しいテキストクロッピング戦略とクロスアテンションモジュールを自己教師付き学習フレームワークに統合する。
我々は、VLMにおける自己蒸留に不可欠な画像とテキストのグローバルおよびローカルビュー(マルチモーダル拡張)を作成する。
さらに、COSMOSは、クロスモーダルな自己蒸留損失によって最適化された総合的なクロスモーダル表現を学習できるクロスアテンションモジュールを導入する。
COSMOSは、検索、分類、セマンティックセグメンテーションなど、さまざまなゼロショットダウンストリームタスクにおいて、以前の強いベースラインを一貫して上回っている。
さらに、視覚知覚とコンテキスト理解タスクにおいて、より大きなデータセットでトレーニングされたCLIPベースのモデルを上回る。
コードはhttps://github.com/ExplainableML/cosmos.comで入手できる。
関連論文リスト
- Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
本稿では,IT-LVLMの基本的なコンピュータビジョンタスクにおける能力を評価するために,スケーラブルなテストベッドを提案する。
MERLIMには300K以上の画像検索ペアが含まれており、IT-LVLMにおけるクロスモーダルな"ハロシン化"イベントの検出に重点を置いている。
論文 参考訳(メタデータ) (2023-12-03T16:39:36Z) - EVE: Efficient Vision-Language Pre-training with Masked Prediction and
Modality-Aware MoE [66.48689706116808]
効率的なビジョン・ランガグ(Efficient Vision-languagE)は、1つの統合された事前訓練タスクによってのみ事前訓練された1つの統合マルチモーダルトランスである。
Eveは、Modality-aware sparse Mixture-of-Expertsと統合された共有トランスフォーマーネットワーク内の視覚と言語をエンコードする。
Eveは、視覚的質問応答、視覚的推論、画像テキスト検索など、様々な視覚言語下流タスクにおける最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-08-23T07:36:30Z) - UniFine: A Unified and Fine-grained Approach for Zero-shot
Vision-Language Understanding [84.83494254263138]
ゼロショット視覚言語学習のための微細な情報を利用する統一的なフレームワークを提案する。
我々のフレームワークは従来のVQAのゼロショット法よりも優れており、SNLI-VEとVCRの大幅な改善を実現している。
論文 参考訳(メタデータ) (2023-07-03T09:03:12Z) - Multi-Modal Representation Learning with Text-Driven Soft Masks [48.19806080407593]
自己教師型学習フレームワークにおける視覚言語表現学習手法を提案する。
画像中の領域をソフトメイキングすることで、画像テキストマッチング(ITM)タスクの多様な特徴を生成する。
マルチモーダルエンコーダを用いて単語条件の視覚的注意を計算し,各単語に関連する領域を同定する。
論文 参考訳(メタデータ) (2023-04-03T05:07:49Z) - Seeing What You Miss: Vision-Language Pre-training with Semantic
Completion Learning [22.464424641734652]
クロスモーダルアライメントは視覚言語事前学習モデルに不可欠である。
本研究では,グローバル・ローカル・アライメントを支援するセマンティック・コンプリート学習タスクを提案する。
また、フレキシブル・ビジョン・エンコーダを導入し、画像テキストとビデオテキストのマルチモーダルタスクを同時に実行できるようにした。
論文 参考訳(メタデータ) (2022-11-24T06:39:16Z) - VLMAE: Vision-Language Masked Autoencoder [21.97700040013084]
視覚言語事前学習のための視覚言語マスク付きオートエンコーダフレームワーク(VLMAE)を提案する。
VLMAEは視覚的生成学習を採用しており、モデルが細粒度で偏りのない特徴を取得するのを容易にする。
論文 参考訳(メタデータ) (2022-08-19T14:39:18Z) - Fine-Grained Semantically Aligned Vision-Language Pre-Training [151.7372197904064]
大規模な視覚言語による事前学習は、幅広い下流タスクにおいて顕著な進歩を見せている。
既存の手法は主に、画像とテキストのグローバルな表現の類似性によって、モーダル間のアライメントをモデル化する。
ゲーム理論的相互作用の新たな視点から, 微粒なセマンティックアライメントを学習する, 微粒なセマンティックなvisiOn-langUage PrEトレーニングフレームワークであるLOを導入する。
論文 参考訳(メタデータ) (2022-08-04T07:51:48Z) - mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal
Skip-connections [104.14624185375897]
mPLUGは、クロスモーダルな理解と生成のための新しいビジョン言語基盤モデルである。
画像キャプション、画像テキスト検索、視覚的グラウンドリング、視覚的質問応答など、幅広い視覚言語下流タスクの最先端結果を達成する。
論文 参考訳(メタデータ) (2022-05-24T11:52:06Z) - KD-VLP: Improving End-to-End Vision-and-Language Pretraining with Object
Knowledge Distillation [42.01427946204401]
自己教師付きビジョン・アンド・ランゲージ事前学習は,大規模な画像テキストデータから伝達可能なマルチモーダル表現を学習することを目的としている。
本稿では,CNN から Transformer へのイメージグリッド機能を直接供給し,マルチモーダル表現を協調的に学習するオブジェクト認識型エンドツーエンド QF フレームワークを提案する。
そこで我々は,オブジェクトの特徴とその意味的ラベルを外部検知器から監視することで,2つの新しいプリテキストタスクを設計する。
論文 参考訳(メタデータ) (2021-09-22T03:38:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。