COSMOS: Cross-Modality Self-Distillation for Vision Language Pre-training
- URL: http://arxiv.org/abs/2412.01814v2
- Date: Wed, 26 Mar 2025 16:07:40 GMT
- Title: COSMOS: Cross-Modality Self-Distillation for Vision Language Pre-training
- Authors: Sanghwan Kim, Rui Xiao, Mariana-Iuliana Georgescu, Stephan Alaniz, Zeynep Akata,
- Abstract summary: We propose COSMOS: CrOSs-MOdality Self-distillation for vision-language pre-training.<n>It integrates a novel text-cropping strategy and cross-attention module into a self-supervised learning framework.<n>It consistently outperforms previous strong baselines on various zero-shot downstream tasks.
- Score: 49.2684130383925
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision-Language Models (VLMs) trained with contrastive loss have achieved significant advancements in various vision and language tasks. However, the global nature of the contrastive loss makes VLMs focus predominantly on foreground objects, neglecting other crucial information in the image, which limits their effectiveness in downstream tasks. To address these challenges, we propose COSMOS: CrOSs-MOdality Self-distillation for vision-language pre-training that integrates a novel text-cropping strategy and cross-attention module into a self-supervised learning framework. We create global and local views of images and texts (i.e., multi-modal augmentations), which are essential for self-distillation in VLMs. We further introduce a cross-attention module, enabling COSMOS to learn comprehensive cross-modal representations optimized via a cross-modality self-distillation loss. COSMOS consistently outperforms previous strong baselines on various zero-shot downstream tasks, including retrieval, classification, and semantic segmentation. Additionally, it surpasses CLIP-based models trained on larger datasets in visual perception and contextual understanding tasks. Code is available at https://github.com/ExplainableML/cosmos.
Related papers
- TWIST & SCOUT: Grounding Multimodal LLM-Experts by Forget-Free Tuning [54.033346088090674]
We introduce TWIST & SCOUT, a framework that equips pre-trained MLLMs with visual grounding ability.
To fine-tune the model effectively, we generate a high-quality synthetic dataset we call SCOUT.
This dataset provides rich supervision signals, describing a step-by-step multimodal reasoning process.
arXiv Detail & Related papers (2024-10-14T13:35:47Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
This paper introduces a scalable test-bed to assess the capabilities of IT-LVLMs on fundamental computer vision tasks.
MERLIM contains over 300K image-question pairs and has a strong focus on detecting cross-modal "hallucination" events in IT-LVLMs.
arXiv Detail & Related papers (2023-12-03T16:39:36Z) - EVE: Efficient Vision-Language Pre-training with Masked Prediction and
Modality-Aware MoE [66.48689706116808]
Efficient Vision-languagE is one unified multimodal Transformer pre-trained solely by one unified pre-training task.
Eve encodes both vision and language within a shared Transformer network integrated with modality-aware sparse Mixture-of-Experts.
Eve achieves state-of-the-art performance on various vision-language downstream tasks, including visual question answering, visual reasoning, and image-text retrieval.
arXiv Detail & Related papers (2023-08-23T07:36:30Z) - UniFine: A Unified and Fine-grained Approach for Zero-shot Vision-Language Understanding [88.24517460894634]
We propose a unified framework to take advantage of the fine-grained information for zero-shot vision-language learning.
Our framework outperforms former zero-shot methods on VQA and achieves substantial improvement on SNLI-VE and VCR.
arXiv Detail & Related papers (2023-07-03T09:03:12Z) - Contrasting Intra-Modal and Ranking Cross-Modal Hard Negatives to Enhance Visio-Linguistic Compositional Understanding [6.798129852396113]
We introduce a simple and effective method to improve compositional reasoning in Vision-Language Models (VLMs)
Our method better leverages available datasets by refining and expanding the standard image-text contrastive learning framework.
When integrated with CLIP, our technique yields notable improvement over state-of-the-art baselines.
arXiv Detail & Related papers (2023-06-15T03:26:28Z) - Seeing What You Miss: Vision-Language Pre-training with Semantic
Completion Learning [22.464424641734652]
Cross-modal alignment is essential for vision-language pre-training models.
We propose a novel Semantic Completion Learning task to facilitate global-to-local alignment.
We also present a flexible vision encoder, which enables our model to perform image-text and video-text multimodal tasks simultaneously.
arXiv Detail & Related papers (2022-11-24T06:39:16Z) - VLMAE: Vision-Language Masked Autoencoder [21.97700040013084]
We propose a vision-language masked autoencoder framework (VLMAE) for vision-language pre-training.
VLMAE employs visual generative learning, facilitating the model to acquire fine-grained and unbiased features.
arXiv Detail & Related papers (2022-08-19T14:39:18Z) - mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal
Skip-connections [104.14624185375897]
mPLUG is a new vision-language foundation model for both cross-modal understanding and generation.
It achieves state-of-the-art results on a wide range of vision-language downstream tasks, such as image captioning, image-text retrieval, visual grounding and visual question answering.
arXiv Detail & Related papers (2022-05-24T11:52:06Z) - Scaling Up Visual and Vision-Language Representation Learning With Noisy
Text Supervision [57.031588264841]
We leverage a noisy dataset of over one billion image alt-text pairs, obtained without expensive filtering or post-processing steps.
A simple dual-encoder architecture learns to align visual and language representations of the image and text pairs using a contrastive loss.
We show that the scale of our corpus can make up for its noise and leads to state-of-the-art representations even with such a simple learning scheme.
arXiv Detail & Related papers (2021-02-11T10:08:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.