Efficient Semantic Communication Through Transformer-Aided Compression
- URL: http://arxiv.org/abs/2412.01817v1
- Date: Mon, 02 Dec 2024 18:57:28 GMT
- Title: Efficient Semantic Communication Through Transformer-Aided Compression
- Authors: Matin Mortaheb, Mohammad A. Amir Khojastepour, Sennur Ulukus,
- Abstract summary: We introduce a channel-aware adaptive framework for semantic communication.
By employing vision transformers, we interpret the attention mask as a measure of the semantic contents of the patches.
Our method enhances communication efficiency by adapting the encoding resolution to the content's relevance.
- Score: 31.285983939625098
- License:
- Abstract: Transformers, known for their attention mechanisms, have proven highly effective in focusing on critical elements within complex data. This feature can effectively be used to address the time-varying channels in wireless communication systems. In this work, we introduce a channel-aware adaptive framework for semantic communication, where different regions of the image are encoded and compressed based on their semantic content. By employing vision transformers, we interpret the attention mask as a measure of the semantic contents of the patches and dynamically categorize the patches to be compressed at various rates as a function of the instantaneous channel bandwidth. Our method enhances communication efficiency by adapting the encoding resolution to the content's relevance, ensuring that even in highly constrained environments, critical information is preserved. We evaluate the proposed adaptive transmission framework using the TinyImageNet dataset, measuring both reconstruction quality and accuracy. The results demonstrate that our approach maintains high semantic fidelity while optimizing bandwidth, providing an effective solution for transmitting multi-resolution data in limited bandwidth conditions.
Related papers
- Take What You Need: Flexible Multi-Task Semantic Communications with Channel Adaptation [51.53221300103261]
This article introduces a novel channel-adaptive and multi-task-aware semantic communication framework based on a masked auto-encoder architecture.
A channel-aware extractor is employed to dynamically select relevant information in response to real-time channel conditions.
Experimental results demonstrate the superior performance of our framework compared to conventional methods in tasks such as image reconstruction and object detection.
arXiv Detail & Related papers (2025-02-12T09:01:25Z) - Semantic Communication based on Generative AI: A New Approach to Image Compression and Edge Optimization [1.450405446885067]
This thesis integrates semantic communication and generative models for optimized image compression and edge network resource allocation.
The communication infrastructure can benefit to significant improvements in bandwidth efficiency and latency reduction.
Results demonstrate the potential of combining generative AI and semantic communication to create more efficient semantic-goal-oriented communication networks.
arXiv Detail & Related papers (2025-02-01T21:48:31Z) - Vision Transformer-based Semantic Communications With Importance-Aware Quantization [13.328970689723096]
This paper presents a vision transformer (ViT)-based semantic communication system with importance-aware quantization (IAQ) for wireless image transmission.
We show that our IAQ framework outperforms conventional image compression methods in both error-free and realistic communication scenarios.
arXiv Detail & Related papers (2024-12-08T19:24:47Z) - Deep Joint Semantic Coding and Beamforming for Near-Space Airship-Borne Massive MIMO Network [70.63240823677182]
Near-space airship-borne communication network urgently needs reliable and efficient Airship-to-X link.
This paper proposes to integrate semantic communication with massive multiple-input multiple-output (MIMO) technology.
arXiv Detail & Related papers (2024-05-30T09:46:59Z) - Transformer-Aided Semantic Communications [28.63893944806149]
We employ vision transformers specifically for the purpose of compression and compact representation of the input image.
Through the use of the attention mechanism inherent in transformers, we create an attention mask.
We evaluate the effectiveness of our proposed framework using the TinyImageNet dataset.
arXiv Detail & Related papers (2024-05-02T17:50:53Z) - Scalable AI Generative Content for Vehicular Network Semantic
Communication [46.589349524682966]
This paper unveils a scalable Artificial Intelligence Generated Content (AIGC) system that leverages an encoder-decoder architecture.
The system converts images into textual representations and reconstructs them into quality-acceptable images, optimizing transmission for vehicular network semantic communication.
Experimental results suggest that the proposed method surpasses the baseline in perceiving vehicles in blind spots and effectively compresses communication data.
arXiv Detail & Related papers (2023-11-23T02:57:04Z) - Communication-Efficient Framework for Distributed Image Semantic
Wireless Transmission [68.69108124451263]
Federated learning-based semantic communication (FLSC) framework for multi-task distributed image transmission with IoT devices.
Each link is composed of a hierarchical vision transformer (HVT)-based extractor and a task-adaptive translator.
Channel state information-based multiple-input multiple-output transmission module designed to combat channel fading and noise.
arXiv Detail & Related papers (2023-08-07T16:32:14Z) - Alignment-free HDR Deghosting with Semantics Consistent Transformer [76.91669741684173]
High dynamic range imaging aims to retrieve information from multiple low-dynamic range inputs to generate realistic output.
Existing methods often focus on the spatial misalignment across input frames caused by the foreground and/or camera motion.
We propose a novel alignment-free network with a Semantics Consistent Transformer (SCTNet) with both spatial and channel attention modules.
arXiv Detail & Related papers (2023-05-29T15:03:23Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
Transformer-based methods have shown impressive performance in single image super-resolution (SISR) tasks.
Transformers that need to incorporate contextual information to extract features dynamically are neglected.
We propose a lightweight Cross-receptive Focused Inference Network (CFIN) that consists of a cascade of CT Blocks mixed with CNN and Transformer.
arXiv Detail & Related papers (2022-07-06T16:32:29Z) - Learning Task-Oriented Communication for Edge Inference: An Information
Bottleneck Approach [3.983055670167878]
A low-end edge device transmits the extracted feature vector of a local data sample to a powerful edge server for processing.
It is critical to encode the data into an informative and compact representation for low-latency inference given the limited bandwidth.
We propose a learning-based communication scheme that jointly optimize feature extraction, source coding, and channel coding.
arXiv Detail & Related papers (2021-02-08T12:53:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.