X-Prompt: Towards Universal In-Context Image Generation in Auto-Regressive Vision Language Foundation Models
- URL: http://arxiv.org/abs/2412.01824v1
- Date: Mon, 02 Dec 2024 18:59:26 GMT
- Title: X-Prompt: Towards Universal In-Context Image Generation in Auto-Regressive Vision Language Foundation Models
- Authors: Zeyi Sun, Ziyang Chu, Pan Zhang, Tong Wu, Xiaoyi Dong, Yuhang Zang, Yuanjun Xiong, Dahua Lin, Jiaqi Wang,
- Abstract summary: In-context generation is a key component of large language models' (LLMs) open-task generalization capability.
X-Prompt is a purely auto-regressive large-vision language model designed to deliver competitive performance across a wide range of both seen and unseen image generation tasks.
A unified training task for both text and image prediction enables X-Prompt to handle general image generation with enhanced task awareness from in-context examples.
- Score: 77.98981338798383
- License:
- Abstract: In-context generation is a key component of large language models' (LLMs) open-task generalization capability. By leveraging a few examples as context, LLMs can perform both in-domain and out-of-domain tasks. Recent advancements in auto-regressive vision-language models (VLMs) built upon LLMs have showcased impressive performance in text-to-image generation. However, the potential of in-context learning for general image generation tasks remains largely unexplored. To address this, we introduce X-Prompt, a purely auto-regressive large-vision language model designed to deliver competitive performance across a wide range of both seen and unseen image generation tasks, all within a unified in-context learning framework. X-Prompt incorporates a specialized design that efficiently compresses valuable features from in-context examples, supporting longer in-context token sequences and improving its ability to generalize to unseen tasks. A unified training task for both text and image prediction enables X-Prompt to handle general image generation with enhanced task awareness from in-context examples. Extensive experiments validate the model's performance across diverse seen image generation tasks and its capacity to generalize to previously unseen tasks.
Related papers
- Instruct-Imagen: Image Generation with Multi-modal Instruction [90.04481955523514]
instruct-imagen is a model that tackles heterogeneous image generation tasks and generalizes across unseen tasks.
We introduce *multi-modal instruction* for image generation, a task representation articulating a range of generation intents with precision.
Human evaluation on various image generation datasets reveals that instruct-imagen matches or surpasses prior task-specific models in-domain.
arXiv Detail & Related papers (2024-01-03T19:31:58Z) - Towards More Unified In-context Visual Understanding [74.55332581979292]
We present a new ICL framework for visual understanding with multi-modal output enabled.
First, we quantize and embed both text and visual prompt into a unified representational space.
Then a decoder-only sparse transformer architecture is employed to perform generative modeling on them.
arXiv Detail & Related papers (2023-12-05T06:02:21Z) - Unifying Image Processing as Visual Prompting Question Answering [62.84955983910612]
Image processing is a fundamental task in computer vision, which aims at enhancing image quality and extracting essential features for subsequent vision applications.
Traditionally, task-specific models are developed for individual tasks and designing such models requires distinct expertise.
We propose a universal model for general image processing that covers image restoration, image enhancement, image feature extraction tasks.
arXiv Detail & Related papers (2023-10-16T15:32:57Z) - InstructCV: Instruction-Tuned Text-to-Image Diffusion Models as Vision Generalists [66.85125112199898]
We develop a unified language interface for computer vision tasks that abstracts away task-specific design choices.
Our model, dubbed InstructCV, performs competitively compared to other generalist and task-specific vision models.
arXiv Detail & Related papers (2023-09-30T14:26:43Z) - Seeing What You Miss: Vision-Language Pre-training with Semantic
Completion Learning [22.464424641734652]
Cross-modal alignment is essential for vision-language pre-training models.
We propose a novel Semantic Completion Learning task to facilitate global-to-local alignment.
We also present a flexible vision encoder, which enables our model to perform image-text and video-text multimodal tasks simultaneously.
arXiv Detail & Related papers (2022-11-24T06:39:16Z) - On Advances in Text Generation from Images Beyond Captioning: A Case
Study in Self-Rationalization [89.94078728495423]
We show that recent advances in each modality, CLIP image representations and scaling of language models, do not consistently improve multimodal self-rationalization of tasks with multimodal inputs.
Our findings call for a backbone modelling approach that can be built on to advance text generation from images and text beyond image captioning.
arXiv Detail & Related papers (2022-05-24T00:52:40Z) - Generative Modeling for Multi-task Visual Learning [40.96212750592383]
We consider a novel problem of learning a shared generative model that is useful across various visual perception tasks.
We propose a general multi-task oriented generative modeling framework, by coupling a discriminative multi-task network with a generative network.
Our framework consistently outperforms state-of-the-art multi-task approaches.
arXiv Detail & Related papers (2021-06-25T03:42:59Z) - All-in-One Image-Grounded Conversational Agents [31.28974522911758]
We design an architecture that combines state-of-the-art Transformer and ResNeXt modules fed into a novel attentive multimodal module.
We provide a thorough analysis of the components of the model, and transfer performance when training on one, some, or all of the tasks.
arXiv Detail & Related papers (2019-12-28T03:51:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.