論文の概要: Monolithic Hybrid Recommender System for Suggesting Relevant Movies
- arxiv url: http://arxiv.org/abs/2412.01835v1
- Date: Sat, 16 Nov 2024 20:41:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-08 09:16:04.160050
- Title: Monolithic Hybrid Recommender System for Suggesting Relevant Movies
- Title(参考訳): モノリシックハイブリッドレコメンダシステムによる関連映画の提案
- Authors: Mahdi Rezapour,
- Abstract要約: 本稿では,視聴映像のシーケンスと関連映画の視聴率を考慮した協調フィルタリングの2つの手法について考察する。
用途に応じて様々な重みが設定される。
この問題を解決するための文献と方法論のアプローチについて論じられた。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Recommendation systems have become the fundamental services to facilitate users information access. Generally, recommendation system works by filtering historical behaviors to understand and learn users preferences. With the growth of online information, recommendations have become of crucial importance in information filtering to prevent the information overload problem. In this study, we considered hybrid post-fusion of two approaches of collaborative filtering, by using sequences of watched movies and considering the related movies rating. After considering both techniques and applying the weights matrix, the recommendations would be modified to correspond to the users preference as needed. We discussed that various weights would be set based on use cases. For instance, in cases where we have the rating for most classes, we will assign a higher weight to the rating matrix and in case where the rating is unavailable for the majority of cases, the higher weights might be assigned to the sequential dataset. An extensive discussion is made in the context of this paper. Sequential type of the watched movies was used in conjunction of the rating as especially that model might be inadequate in distinguishing users long-term preference and that does not account for the rating of the watched movies and thus that model along might not suffice. Extensive discussion was made regarding the literature and methodological approach to solve the problem.
- Abstract(参考訳): 推薦システムは,ユーザの情報アクセスを促進するための基本サービスとなっている。
一般的なレコメンデーションシステムは,ユーザの好みを理解し学習するために,過去の行動をフィルタリングすることで機能する。
オンライン情報の増加に伴い、情報過負荷問題を防止するため、情報フィルタリングにおいてレコメンデーションが重要になっている。
本研究では,2つの協調フィルタリング手法のハイブリッド・ポストフュージョンを検討した。
テクニックと重み行列の適用の両方を考慮すると、必要に応じてユーザの好みに合わせてレコメンデーションが修正される。
さまざまな重みをユースケースに基づいて設定することについて議論した。
例えば、ほとんどのクラスのレーティングがある場合、レーティングマトリックスにより高い重みを割り当て、ほとんどの場合、評価が利用できない場合は、シーケンシャルデータセットにより高い重みを割り当てるかもしれません。
この論文の文脈で広範な議論がなされている。
視聴された映画の連続型は、特に長期的嗜好を区別するのに不適当であり、視聴した映画の視聴率を考慮しないため、そのモデルが十分でないため、評価と組み合わせて使用された。
この問題を解決するための文献と方法論のアプローチについて、広範囲にわたる議論がなされた。
関連論文リスト
- Dissertation: On the Theoretical Foundation of Model Comparison and Evaluation for Recommender System [4.76281731053599]
レコメンダシステムは、ユーザの履歴データを利用して顧客の興味を推測し、パーソナライズされたレコメンデーションを提供する。
協調フィルタリング(Collaborative filtering)は、複数のユーザのレーティングを使用して、欠落したレーティングを予測するレコメンデーションアルゴリズムの1つである。
Recommender システムはより複雑になり、コンテンツベースの属性やユーザインタラクション、コンテキスト情報などの補助的なデータを組み込むことができる。
論文 参考訳(メタデータ) (2024-11-04T06:31:52Z) - An Efficient Multi-threaded Collaborative Filtering Approach in Recommendation System [0.0]
本研究は,多数のユーザを効率的に扱えるスケーラブルなレコメンデーションシステムの構築に焦点を当てる。
これを実現するために、マルチスレッドの類似性アプローチが採用されている。
この並列化は従来の手法に比べて計算時間を著しく短縮し、高速で効率的でスケーラブルなレコメンデーションシステムをもたらす。
論文 参考訳(メタデータ) (2024-09-28T06:33:18Z) - A Large Language Model Enhanced Sequential Recommender for Joint Video and Comment Recommendation [77.42486522565295]
我々は、パーソナライズされたビデオとコメントのレコメンデーションを共同で行うLSVCRと呼ばれる新しいレコメンデーション手法を提案する。
提案手法は,逐次レコメンデーション(SR)モデルと補足型大規模言語モデル(LLM)レコメンデーションという2つの重要なコンポーネントから構成される。
特に、コメント視聴時間の4.13%が大幅に向上した。
論文 参考訳(メタデータ) (2024-03-20T13:14:29Z) - Impression-Aware Recommender Systems [57.38537491535016]
新たなデータソースは、レコメンデーションシステムの品質を改善する新しい機会をもたらす。
研究者はインプレッションを使ってユーザーの好みを洗練させ、推奨システム研究の現在の制限を克服することができる。
本稿ではインプレッションを用いたレコメンデーションシステムに関する体系的な文献レビューを行う。
論文 参考訳(メタデータ) (2023-08-15T16:16:02Z) - Movie Recommender System using critic consensus [0.0]
協調コンテンツとコンテンツベースのコンテンツの統合に基づくハイブリッドレコメンデーションシステムを提案する。
ユーザの好みと批判的コンセンサススコアの組み合わせに基づいて映画を推薦する新しいモデルを提示したい。
論文 参考訳(メタデータ) (2021-12-22T13:04:41Z) - On component interactions in two-stage recommender systems [82.38014314502861]
2段階のレコメンデータは、YouTube、LinkedIn、Pinterestなど、多くのオンラインプラットフォームで使用されている。
ランク付け器と評価器の相互作用が全体の性能に大きく影響していることが示される。
特に、Mixture-of-Expertsアプローチを用いて、アイテムプールの異なるサブセットに特化するように、ノミネータを訓練する。
論文 参考訳(メタデータ) (2021-06-28T20:53:23Z) - The Stereotyping Problem in Collaboratively Filtered Recommender Systems [77.56225819389773]
行列分解に基づく協調フィルタリングアルゴリズムは,ある種のステレオタイピングを誘導することを示す。
一般のユーザ層では、テキストセットの好みが反相関性がある場合、これらの項目は、ユーザーには推奨されない。
本稿では,各ユーザの多様な利害関係を捉えるために,代替的なモデリング修正を提案する。
論文 参考訳(メタデータ) (2021-06-23T18:37:47Z) - A Methodology for the Offline Evaluation of Recommender Systems in a
User Interface with Multiple Carousels [7.8851236034886645]
ビデオオンデマンドおよび音楽ストリーミングサービスは、複数の推奨リストからなるページをユーザーに提供します。
展示するカルーセルを選択するための効率的な戦略を見つけることは、大きな産業的関心の活発な研究課題である。
本論文では, カルーセル設定のオフライン評価プロトコルを提案し, モデルの推奨品質を, すでに利用可能なカルーセルのセットでどれだけ改善するかによって測定する。
論文 参考訳(メタデータ) (2021-05-13T13:14:59Z) - Thematic recommendations on knowledge graphs using multilayer networks [0.0]
知識グラフ(KG)の多層ネットワーク表現に基づくテーマレコメンデーションの生成と評価のためのフレームワークを提案する。
この表現では、各層はKG内の異なるタイプの関係を符号化し、有向層間結合は異なる役割において同じエンティティを接続する。
パーソナライズされたPageRankアルゴリズムをKGの多層モデルに適用し,項目列レコメンデーションを生成する。
論文 参考訳(メタデータ) (2021-05-12T15:30:21Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
我々は知識グラフに基づく推薦システムの体系的な調査を行う。
論文は、知識グラフを正確かつ説明可能なレコメンデーションにどのように活用するかに焦点を当てる。
これらの作業で使用されるデータセットを紹介します。
論文 参考訳(メタデータ) (2020-02-28T02:26:30Z) - A Bayesian Approach to Conversational Recommendation Systems [60.12942570608859]
ベイズ的アプローチに基づく会話推薦システムを提案する。
エンターテイナーを予約するオンラインプラットフォームであるemphstagend.comへのこのアプローチの適用に基づくケーススタディについて論じる。
論文 参考訳(メタデータ) (2020-02-12T15:59:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。