Enhancing Brain Age Estimation with a Multimodal 3D CNN Approach Combining Structural MRI and AI-Synthesized Cerebral Blood Volume Data
- URL: http://arxiv.org/abs/2412.01865v3
- Date: Mon, 27 Jan 2025 17:24:51 GMT
- Title: Enhancing Brain Age Estimation with a Multimodal 3D CNN Approach Combining Structural MRI and AI-Synthesized Cerebral Blood Volume Data
- Authors: Jordan Jomsky, Zongyu Li, Yiren Zhang, Tal Nuriel, Jia Guo,
- Abstract summary: Brain Age Gap Estimation (BrainAGE) offers a neuroimaging biomarker for understanding brain age.
Current approaches primarily use T1-weighted magnetic resonance imaging (T1w MRI) data, capturing only structural brain information.
We developed a deep learning model using a VGG-based architecture for both modalities and combined their predictions using linear regression.
Our model achieved a mean absolute error (MAE) of 3.95 years and an $R2$ of 0.943 on the test set, outperforming existing models trained on similar data.
- Score: 14.815462507141163
- License:
- Abstract: The increasing global aging population necessitates improved methods to assess brain aging and its related neurodegenerative changes. Brain Age Gap Estimation (BrainAGE) offers a neuroimaging biomarker for understanding these changes by predicting brain age from MRI scans. Current approaches primarily use T1-weighted magnetic resonance imaging (T1w MRI) data, capturing only structural brain information. To address this limitation, AI-generated Cerebral Blood Volume (AICBV) data, synthesized from non-contrast MRI scans, offers functional insights by revealing subtle blood-tissue contrasts otherwise undetectable in standard imaging. We integrated AICBV with T1w MRI to predict brain age, combining both structural and functional metrics. We developed a deep learning model using a VGG-based architecture for both modalities and combined their predictions using linear regression. Our model achieved a mean absolute error (MAE) of 3.95 years and an $R^2$ of 0.943 on the test set ($n = 288$), outperforming existing models trained on similar data. We have further created gradient-based class activation maps (Grad-CAM) to visualize the regions of the brain that most influenced the model's predictions, providing interpretable insights into the structural and functional contributors to brain aging.
Related papers
- Brain Ageing Prediction using Isolation Forest Technique and Residual Neural Network (ResNet) [0.3495246564946556]
We propose a novel deep learning approach using the Residual Neural Network 101 Version 2 (ResNet101V2) model to predict brain age from MRI scans.
To train, validate and test our proposed model, we used a large dataset of 2102 images which were selected randomly from the International Consortium for Brain Mapping (ICBM)
arXiv Detail & Related papers (2024-12-26T01:49:21Z) - Biological Brain Age Estimation using Sex-Aware Adversarial Variational Autoencoder with Multimodal Neuroimages [8.610253537046692]
We propose a novel framework for brain age estimation utilizing a sex-aware adversarial variational autoencoder (SA-AVAE)
We decompose the latent space into modality-specific codes and shared codes to represent complementary and common information across modalities.
We incorporate sex information into the learned latent code, enabling the model to capture sex-specific aging patterns for brain age estimation.
arXiv Detail & Related papers (2024-12-07T12:10:29Z) - Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - Dual Graph Attention based Disentanglement Multiple Instance Learning for Brain Age Estimation [24.548441213107566]
We propose a Dual Graph Attention based Disentanglement Multi-instance Learning (DGA-DMIL) framework for improving brain age estimation.
A dual graph attention aggregator is then proposed to learn the backbone features by exploiting the intra- and inter-instance relationships.
Our proposed model demonstrates exceptional accuracy in estimating brain age, achieving a remarkable mean absolute error of 2.12 years in the UK Biobank.
arXiv Detail & Related papers (2024-03-02T16:13:06Z) - Robust Brain Age Estimation via Regression Models and MRI-derived
Features [2.028990630951476]
We present a novel brain age estimation framework using the Open Big Healthy Brain (OpenBHB) dataset.
Our approach integrates three different MRI-derived region-wise features and different regression models, resulting in a highly accurate brain age estimation.
arXiv Detail & Related papers (2023-06-08T19:07:22Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with
Multi-Task Brain Age Prediction [53.122045119395594]
Unsupervised anomaly detection (UAD) in brain MRI with deep learning has shown promising results.
We propose deep learning for UAD in 3D brain MRI considering additional age information.
Based on our analysis, we propose a novel deep learning approach for UAD with multi-task age prediction.
arXiv Detail & Related papers (2022-01-31T09:39:52Z) - Infant Brain Age Classification: 2D CNN Outperforms 3D CNN in Small
Dataset [0.14063138455565613]
Brain magnetic resonance imaging (MRI) of infants demonstrates a specific pattern of development beyond myelination.
With no standardized criteria, visual estimation of the structural maturity of the brain from MRI before three years of age remains dominated by inter-observer and intra-observer variability.
We explore the general feasibility to tackle this task, and the utility of different approaches, including two- and three-dimensional convolutional neural networks (CNN)
In the best performing approach, we achieved an accuracy of 0.90 [95% CI:0.86-0.94] using a 2D CNN on a central axial thick slab.
arXiv Detail & Related papers (2021-12-27T18:02:48Z) - Brain Age Estimation From MRI Using Cascade Networks with Ranking Loss [75.03117866578913]
A novel 3D convolutional network, called two-stage-age-network (TSAN), is proposed to estimate brain age from T1-weighted MRI data.
Experiments with $6586$ MRIs showed that TSAN could provide accurate brain age estimation.
arXiv Detail & Related papers (2021-06-06T07:11:25Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
Brain age estimation from Magnetic Resonance Images (MRI) derives the difference between a subject's biological brain age and their chronological age.
Early detection of neurodegeneration manifesting as a higher brain age can potentially facilitate better medical care and planning for affected individuals.
We develop a new deep learning approach that uses 3D patches of the brain as well as convolutional neural networks (CNNs) to develop a localised brain age estimator.
arXiv Detail & Related papers (2020-08-29T11:50:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.