PROFIT: A Specialized Optimizer for Deep Fine Tuning
- URL: http://arxiv.org/abs/2412.01930v2
- Date: Mon, 09 Dec 2024 06:03:19 GMT
- Title: PROFIT: A Specialized Optimizer for Deep Fine Tuning
- Authors: Anirudh S Chakravarthy, Shuai Kyle Zheng, Xin Huang, Sachithra Hemachandra, Xiao Zhang, Yuning Chai, Zhao Chen,
- Abstract summary: We present PROFIT (Prolly Restricted For Iterative Training), one of the firsts specifically designed for incrementally fine-tuning converged models on new tasks or datasets.
By employing a simple temporalization process, PROFIT outperforms traditional fine-tuning methods across various tasks.
PROFIT is encapsulated within the logic, making it easily integrated into any training pipeline with minimal engineering effort.
- Score: 9.082267858686933
- License:
- Abstract: Fine-tuning pre-trained models has become invaluable in computer vision and robotics. Recent fine-tuning approaches focus on improving efficiency rather than accuracy by using a mixture of smaller learning rates or frozen backbones. To return the spotlight to model accuracy, we present PROFIT (Proximally Restricted Optimizer For Iterative Training), one of the first optimizers specifically designed for incrementally fine-tuning converged models on new tasks or datasets. Unlike traditional optimizers such as SGD or Adam, which make minimal assumptions due to random initialization, PROFIT leverages the structure of a converged model to regularize the optimization process, leading to improved results. By employing a simple temporal gradient orthogonalization process, PROFIT outperforms traditional fine-tuning methods across various tasks: image classification, representation learning, and large-scale motion prediction. Moreover, PROFIT is encapsulated within the optimizer logic, making it easily integrated into any training pipeline with minimal engineering effort. A new class of fine-tuning optimizers like PROFIT can drive advancements as fine-tuning and incremental training become increasingly prevalent, reducing reliance on costly model training from scratch.
Related papers
- SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.
We propose a novel model fine-tuning method to make full use of these ineffective parameters.
Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - Narrowing the Focus: Learned Optimizers for Pretrained Models [24.685918556547055]
We propose a novel technique that learns a layer-specific linear combination of update directions provided by a set of base work tasks.
When evaluated on an image, this specialized significantly outperforms both traditional off-the-shelf methods such as Adam, as well existing general learneds.
arXiv Detail & Related papers (2024-08-17T23:55:19Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFT is a fine-tuning strategy that freezes the majority of the model's parameters, focusing adjustments on newly introduced prompts and adapters.
Our experiments show that Forecast-PEFT outperforms traditional full fine-tuning methods in motion prediction tasks.
Forecast-FT further improves prediction performance, evidencing up to a 9.6% enhancement over conventional baseline methods.
arXiv Detail & Related papers (2024-07-28T19:18:59Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - Aligning Optimization Trajectories with Diffusion Models for Constrained
Design Generation [17.164961143132473]
We introduce a learning framework that demonstrates the efficacy of aligning the sampling trajectory of diffusion models with the optimization trajectory derived from traditional physics-based methods.
Our method allows for generating feasible and high-performance designs in as few as two steps without the need for expensive preprocessing, external surrogate models, or additional labeled data.
Our results demonstrate that TA outperforms state-of-the-art deep generative models on in-distribution configurations and halves the inference computational cost.
arXiv Detail & Related papers (2023-05-29T09:16:07Z) - A Closer Look at Learned Optimization: Stability, Robustness, and
Inductive Biases [44.01339030872185]
Blackbox learneds often struggle with stability and generalization when applied to tasks unlike those in their meta-training set.
We investigate the inductive biases and stability properties of optimization algorithms, and apply the resulting insights to designing inductive biases for blackboxs.
We learn to a variety of neural network training tasks, where it outperforms the current state of the art learned.
arXiv Detail & Related papers (2022-09-22T17:47:21Z) - Training Learned Optimizers with Randomly Initialized Learned Optimizers [49.67678615506608]
We show that a population of randomly learneds can be used to train themselves from scratch in an online fashion.
A form of population based training is used to orchestrate this self-training.
We believe feedback loops of this type will be important and powerful in the future of machine learning.
arXiv Detail & Related papers (2021-01-14T19:07:17Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z) - Improved Adversarial Training via Learned Optimizer [101.38877975769198]
We propose a framework to improve the robustness of adversarial training models.
By co-training's parameters model's weights, the proposed framework consistently improves robustness and steps adaptively for update directions.
arXiv Detail & Related papers (2020-04-25T20:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.