Geometry-aware PINNs for Turbulent Flow Prediction
- URL: http://arxiv.org/abs/2412.01954v1
- Date: Mon, 02 Dec 2024 20:30:53 GMT
- Title: Geometry-aware PINNs for Turbulent Flow Prediction
- Authors: Shinjan Ghosh, Julian Busch, Georgia Olympia Brikis, Biswadip Dey,
- Abstract summary: A novel geometry aware parametric PINN surrogate model has been created, which can predict flow fields for NACA 4 digit airfoils in turbulent conditions.
The models have been validated with unknown NACA airfoils at unseen Reynolds numbers.
- Score: 3.193631734016982
- License:
- Abstract: Design exploration or optimization using computational fluid dynamics (CFD) is commonly used in the industry. Geometric variation is a key component of such design problems, especially in turbulent flow scenarios, which involves running costly simulations at every design iteration. While parametric RANS-PINN type approaches have been proven to make effective turbulent surrogates, as a means of predicting unknown Reynolds number flows for a given geometry at near real-time, geometry aware physics informed surrogates with the ability to predict varying geometries are a relatively less studied topic. A novel geometry aware parametric PINN surrogate model has been created, which can predict flow fields for NACA 4 digit airfoils in turbulent conditions, for unseen shapes as well as inlet flow conditions. A local+global approach for embedding has been proposed, where known global design parameters for an airfoil as well as local SDF values can be used as inputs to the model along with velocity inlet/Reynolds number ($\mathcal{R}_e$) to predict the flow fields. A RANS formulation of the Navier-Stokes equations with a 2-equation k-epsilon turbulence model has been used for the PDE losses, in addition to limited CFD data from 8 different NACA airfoils for training. The models have then been validated with unknown NACA airfoils at unseen Reynolds numbers.
Related papers
- A Geometry-Aware Message Passing Neural Network for Modeling Aerodynamics over Airfoils [61.60175086194333]
aerodynamics is a key problem in aerospace engineering, often involving flows interacting with solid objects such as airfoils.
Here, we consider modeling of incompressible flows over solid objects, wherein geometric structures are a key factor in determining aerodynamics.
To effectively incorporate geometries, we propose a message passing scheme that efficiently and expressively integrates the airfoil shape with the mesh representation.
These design choices lead to a purely data-driven machine learning framework known as GeoMPNN, which won the Best Student Submission award at the NeurIPS 2024 ML4CFD Competition, placing 4th overall.
arXiv Detail & Related papers (2024-12-12T16:05:39Z) - Using Parametric PINNs for Predicting Internal and External Turbulent Flows [6.387263468033964]
We build upon the previously proposed RANS-PINN framework, which only focused on predicting flow over a cylinder.
We investigate its accuracy in predicting relevant turbulent flow variables for both internal and external flows.
arXiv Detail & Related papers (2024-10-24T17:08:20Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
We propose the geometry-informed neural operator (GINO) to learn the solution operator of large-scale partial differential equations.
We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points.
arXiv Detail & Related papers (2023-09-01T16:59:21Z) - RANS-PINN based Simulation Surrogates for Predicting Turbulent Flows [3.1861308132183384]
We introduce RANS-PINN, a modified PINN framework, to predict flow fields in high Reynolds number turbulent flow regimes.
To account for the additional complexity introduced by turbulence, RANS-PINN employs a 2-equation eddy viscosity model based on a Reynolds-averaged Navier-Stokes (RANS) formulation.
arXiv Detail & Related papers (2023-06-09T16:55:49Z) - Generalization capabilities of conditional GAN for turbulent flow under
changes of geometry [0.6445605125467573]
generative adversarial networks (GAN) for the synthetic modeling of turbulence is a mathematically well-founded approach to overcome this issue.
In this work, we investigate the generalization capabilites of GAN-based synthetic turbulence generators when geometrical changes occur in the flow configuration.
We show the abilities and limits of generalization for the conditional GAN by extending the regions of the extracted wake positions.
arXiv Detail & Related papers (2023-02-20T12:21:34Z) - Fourier Neural Operator with Learned Deformations for PDEs on General Geometries [75.91055304134258]
We propose a new framework, viz., geo-FNO, to solve PDEs on arbitrary geometries.
Geo-FNO learns to deform the input (physical) domain, which may be irregular, into a latent space with a uniform grid.
We consider a variety of PDEs such as the Elasticity, Plasticity, Euler's, and Navier-Stokes equations, and both forward modeling and inverse design problems.
arXiv Detail & Related papers (2022-07-11T21:55:47Z) - Deep Equilibrium Optical Flow Estimation [80.80992684796566]
Recent state-of-the-art (SOTA) optical flow models use finite-step recurrent update operations to emulate traditional algorithms.
These RNNs impose large computation and memory overheads, and are not directly trained to model such stable estimation.
We propose deep equilibrium (DEQ) flow estimators, an approach that directly solves for the flow as the infinite-level fixed point of an implicit layer.
arXiv Detail & Related papers (2022-04-18T17:53:44Z) - Surrogate Model for Shallow Water Equations Solvers with Deep Learning [6.123836425156534]
This work introduces an efficient, accurate, and flexible surrogate model, NN-p2p, based on deep learning.
The input includes both spatial coordinates and boundary features that can describe the geometry of hydraulic structures.
NN-p2p has good performance in predicting flow around piers unseen by the neural network.
arXiv Detail & Related papers (2021-12-20T22:30:11Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Moser Flow: Divergence-based Generative Modeling on Manifolds [49.04974733536027]
Moser Flow (MF) is a new class of generative models within the family of continuous normalizing flows (CNF)
MF does not require invoking or backpropagating through an ODE solver during training.
We demonstrate for the first time the use of flow models for sampling from general curved surfaces.
arXiv Detail & Related papers (2021-08-18T09:00:24Z) - DeepCFD: Efficient Steady-State Laminar Flow Approximation with Deep
Convolutional Neural Networks [5.380828749672078]
DeepCFD is a convolutional neural network (CNN) based model that efficiently approximates solutions for the problem of non-uniform steady laminar flows.
Using DeepCFD, we found a speedup of up to 3 orders of magnitude compared to the standard CFD approach at a cost of low error rates.
arXiv Detail & Related papers (2020-04-19T12:00:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.