Learning Ensembles of Vision-based Safety Control Filters
- URL: http://arxiv.org/abs/2412.02029v1
- Date: Mon, 02 Dec 2024 23:19:31 GMT
- Title: Learning Ensembles of Vision-based Safety Control Filters
- Authors: Ihab Tabbara, Hussein Sibai,
- Abstract summary: Safety filters in control systems correct nominal controls that violate safety constraints.
Deep learning-based approaches to tackle this challenge have been proposed recently.
We empirically investigate the efficacy of ensembles in enhancing the accuracy and the out-of-distribution generalization of such filters.
- Score: 0.0
- License:
- Abstract: Safety filters in control systems correct nominal controls that violate safety constraints. Designing such filters as functions of visual observations in uncertain and complex environments is challenging. Several deep learning-based approaches to tackle this challenge have been proposed recently. However, formally verifying that the learned filters satisfy critical properties that enable them to guarantee the safety of the system is currently beyond reach. Instead, in this work, motivated by the success of ensemble methods in reinforcement learning, we empirically investigate the efficacy of ensembles in enhancing the accuracy and the out-of-distribution generalization of such filters, as a step towards more reliable ones. We experiment with diverse pre-trained vision representation models as filter backbones, training approaches, and output aggregation techniques. We compare the performance of ensembles with different configurations against each other, their individual member models, and large single-model baselines in distinguishing between safe and unsafe states and controls in the DeepAccident dataset. Our results show that diverse ensembles have better state and control classification accuracies compared to individual models.
Related papers
- Q-learning-based Model-free Safety Filter [6.391687991642366]
This paper proposes a simple, plugin-and-play, and effective model-free safety filter learning framework.
We introduce a novel reward formulation and use Q-learning to learn Q-value functions to safeguard arbitrary task specific nominal policies.
arXiv Detail & Related papers (2024-11-29T16:16:59Z) - Pre-Trained Vision Models as Perception Backbones for Safety Filters in Autonomous Driving [2.4381063627159523]
Safety remains a major concern in end-to-end vision-based autonomous driving.
We use frozen pre-trained vision representation models as perception backbones to design vision-based safety filters.
We empirically evaluate the offline performance of four common pre-trained vision models in this context.
arXiv Detail & Related papers (2024-10-29T22:59:23Z) - Safety Filters for Black-Box Dynamical Systems by Learning Discriminating Hyperplanes [26.242421052632807]
Learning-based approaches are emerging as an effective approach for safety filters for black-box dynamical systems.
We present two strategies to learn the discriminating hyperplane: (a) a supervised learning approach, using pre-verified control invariant sets for labeling, and (b) a reinforcement learning (RL) approach, which does not require such labels.
arXiv Detail & Related papers (2024-02-07T21:49:51Z) - In-Distribution Barrier Functions: Self-Supervised Policy Filters that
Avoid Out-of-Distribution States [84.24300005271185]
We propose a control filter that wraps any reference policy and effectively encourages the system to stay in-distribution with respect to offline-collected safe demonstrations.
Our method is effective for two different visuomotor control tasks in simulation environments, including both top-down and egocentric view settings.
arXiv Detail & Related papers (2023-01-27T22:28:19Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Resisting Adversarial Attacks in Deep Neural Networks using Diverse
Decision Boundaries [12.312877365123267]
Deep learning systems are vulnerable to crafted adversarial examples, which may be imperceptible to the human eye, but can lead the model to misclassify.
We develop a new ensemble-based solution that constructs defender models with diverse decision boundaries with respect to the original model.
We present extensive experimentations using standard image classification datasets, namely MNIST, CIFAR-10 and CIFAR-100 against state-of-the-art adversarial attacks.
arXiv Detail & Related papers (2022-08-18T08:19:26Z) - Joint Differentiable Optimization and Verification for Certified
Reinforcement Learning [91.93635157885055]
In model-based reinforcement learning for safety-critical control systems, it is important to formally certify system properties.
We propose a framework that jointly conducts reinforcement learning and formal verification.
arXiv Detail & Related papers (2022-01-28T16:53:56Z) - Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations [50.37808220291108]
This paper addresses learning safe output feedback control laws from partial observations of expert demonstrations.
We first propose robust output control barrier functions (ROCBFs) as a means to guarantee safety.
We then formulate an optimization problem to learn ROCBFs from expert demonstrations that exhibit safe system behavior.
arXiv Detail & Related papers (2021-11-18T23:21:00Z) - An Adaptive Framework for Learning Unsupervised Depth Completion [59.17364202590475]
We present a method to infer a dense depth map from a color image and associated sparse depth measurements.
We show that regularization and co-visibility are related via the fitness of the model to data and can be unified into a single framework.
arXiv Detail & Related papers (2021-06-06T02:27:55Z) - Learning Hybrid Control Barrier Functions from Data [66.37785052099423]
Motivated by the lack of systematic tools to obtain safe control laws for hybrid systems, we propose an optimization-based framework for learning certifiably safe control laws from data.
In particular, we assume a setting in which the system dynamics are known and in which data exhibiting safe system behavior is available.
arXiv Detail & Related papers (2020-11-08T23:55:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.