The Problem of Social Cost in Multi-Agent General Reinforcement Learning: Survey and Synthesis
- URL: http://arxiv.org/abs/2412.02091v1
- Date: Tue, 03 Dec 2024 02:22:55 GMT
- Title: The Problem of Social Cost in Multi-Agent General Reinforcement Learning: Survey and Synthesis
- Authors: Kee Siong Ng, Samuel Yang-Zhao, Timothy Cadogan-Cowper,
- Abstract summary: We consider the problem of social harms that can result from actions taken by learning and utility-maximising agents in a multi-agent environment.
We propose market-based mechanisms to quantify and control the cost of such social harms.
- Score: 4.813333335683418
- License:
- Abstract: The AI safety literature is full of examples of powerful AI agents that, in blindly pursuing a specific and usually narrow objective, ends up with unacceptable and even catastrophic collateral damage to others. In this paper, we consider the problem of social harms that can result from actions taken by learning and utility-maximising agents in a multi-agent environment. The problem of measuring social harms or impacts in such multi-agent settings, especially when the agents are artificial generally intelligent (AGI) agents, was listed as an open problem in Everitt et al, 2018. We attempt a partial answer to that open problem in the form of market-based mechanisms to quantify and control the cost of such social harms. The proposed setup captures many well-studied special cases and is more general than existing formulations of multi-agent reinforcement learning with mechanism design in two ways: (i) the underlying environment is a history-based general reinforcement learning environment like in AIXI; (ii) the reinforcement-learning agents participating in the environment can have different learning strategies and planning horizons. To demonstrate the practicality of the proposed setup, we survey some key classes of learning algorithms and present a few applications, including a discussion of the Paperclips problem and pollution control with a cap-and-trade system.
Related papers
- Multi-Agent Risks from Advanced AI [90.74347101431474]
Multi-agent systems of advanced AI pose novel and under-explored risks.
We identify three key failure modes based on agents' incentives, as well as seven key risk factors.
We highlight several important instances of each risk, as well as promising directions to help mitigate them.
arXiv Detail & Related papers (2025-02-19T23:03:21Z) - Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI [52.138044013005]
generative AI, particularly large language models (LLMs), become increasingly integrated into production applications.
New attack surfaces and vulnerabilities emerge and put a focus on adversarial threats in natural language and multi-modal systems.
Red-teaming has gained importance in proactively identifying weaknesses in these systems, while blue-teaming works to protect against such adversarial attacks.
This work aims to bridge the gap between academic insights and practical security measures for the protection of generative AI systems.
arXiv Detail & Related papers (2024-09-23T10:18:10Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
We propose to enable high-level reasoning in AI systems by integrating cognitive architectures with external neuro-symbolic components.
We illustrate a hybrid framework centered on ACT-R and we discuss the role of generative models in recent and future applications.
arXiv Detail & Related papers (2023-11-13T21:20:17Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
Large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI)
We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for agents.
We explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation.
arXiv Detail & Related papers (2023-09-14T17:12:03Z) - A Survey on Large-Population Systems and Scalable Multi-Agent
Reinforcement Learning [18.918558716102144]
We will shed light on current approaches to tractably understanding and analyzing large-population systems.
We will survey potential areas of application for large-scale control and identify fruitful future applications of learning algorithms in practical systems.
arXiv Detail & Related papers (2022-09-08T14:58:50Z) - Robust Reinforcement Learning via Genetic Curriculum [5.421464476555662]
Genetic curriculum is an algorithm that automatically identifies scenarios in which the agent currently fails and generates an associated curriculum.
Our empirical studies show improvement in robustness over the existing state of the art algorithms, providing training curricula that result in agents being 2 - 8x times less likely to fail.
arXiv Detail & Related papers (2022-02-17T01:14:20Z) - Q-Mixing Network for Multi-Agent Pathfinding in Partially Observable
Grid Environments [62.997667081978825]
We consider the problem of multi-agent navigation in partially observable grid environments.
We suggest utilizing the reinforcement learning approach when the agents, first, learn the policies that map observations to actions and then follow these policies to reach their goals.
arXiv Detail & Related papers (2021-08-13T09:44:47Z) - Robust Risk-Sensitive Reinforcement Learning Agents for Trading Markets [23.224860573461818]
Trading markets represent a real-world financial application to deploy reinforcement learning agents.
Our work is the first one extending empirical game theory analysis for multi-agent learning by considering risk-sensitive payoffs.
arXiv Detail & Related papers (2021-07-16T19:15:13Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
The use of deep neural networks (DNNs) in safety-critical applications is challenging due to numerous model-inherent shortcomings.
In recent years, a zoo of state-of-the-art techniques aiming to address these safety concerns has emerged.
Our paper addresses both machine learning experts and safety engineers.
arXiv Detail & Related papers (2021-04-29T09:54:54Z) - Heterogeneous Multi-Agent Reinforcement Learning for Unknown Environment
Mapping [0.0]
We present an actor-critic algorithm that allows a team of heterogeneous agents to learn decentralized control policies for covering an unknown environment.
This task is of interest to national security and emergency response organizations that would like to enhance situational awareness in hazardous areas by deploying teams of unmanned aerial vehicles.
arXiv Detail & Related papers (2020-10-06T12:23:05Z) - Ubiquitous Distributed Deep Reinforcement Learning at the Edge:
Analyzing Byzantine Agents in Discrete Action Spaces [0.06554326244334865]
This paper discusses some of the challenges in multi-agent distributed deep reinforcement learning that can occur in the presence of byzantine or malfunctioning agents.
We show how wrong discrete actions can significantly affect the collaborative learning effort.
Experiments are carried out in a simulation environment using the Atari testbed for the discrete action spaces, and advantage actor-critic (A2C) for the distributed multi-agent training.
arXiv Detail & Related papers (2020-08-18T11:25:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.