Improving Sequential Recommender Systems with Online and In-store User Behavior
- URL: http://arxiv.org/abs/2412.02122v1
- Date: Tue, 03 Dec 2024 03:20:40 GMT
- Title: Improving Sequential Recommender Systems with Online and In-store User Behavior
- Authors: Luyi Ma, Aashika Padmanabhan, Anjana Ganesh, Shengwei Tang, Jiao Chen, Xiaohan Li, Lalitesh Morishetti, Kaushiki Nag, Malay Patel, Jason Cho, Sushant Kumar, Kannan Achan,
- Abstract summary: We propose a hybrid, omnichannel data pipeline to compile online and in-store user behavior data by caching information from diverse data sources.<n>We introduce a model-agnostic encoder module to the sequential recommender system to interpret the user in-store transaction.
- Score: 8.606708734834623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Online e-commerce platforms have been extending in-store shopping, which allows users to keep the canonical online browsing and checkout experience while exploring in-store shopping. However, the growing transition between online and in-store becomes a challenge to sequential recommender systems for future online interaction prediction due to the lack of holistic modeling of hybrid user behaviors (online and in-store). The challenges are twofold. First, combining online and in-store user behavior data into a single data schema and supporting multiple stages in the model life cycle (pre-training, training, inference, etc.) organically needs a new data pipeline design. Second, online recommender systems, which solely rely on online user behavior sequences, must be redesigned to support online and in-store user data as input under the sequential modeling setting. To overcome the first challenge, we propose a hybrid, omnichannel data pipeline to compile online and in-store user behavior data by caching information from diverse data sources. Later, we introduce a model-agnostic encoder module to the sequential recommender system to interpret the user in-store transaction and augment the modeling capacity for better online interaction prediction given the hybrid user behavior.
Related papers
- BayesCNS: A Unified Bayesian Approach to Address Cold Start and Non-Stationarity in Search Systems at Scale [1.1634177851893535]
BayesCNS is designed to handle cold start and non-stationary distribution shifts in search systems at scale.
BayesCNS achieves this by estimating prior distributions for user-item interactions, which are continuously updated with new user interactions gathered online.
This online learning procedure is guided by a ranker model, enabling efficient exploration of relevant items using contextual information.
arXiv Detail & Related papers (2024-10-03T01:14:30Z) - Do Not Wait: Learning Re-Ranking Model Without User Feedback At Serving Time in E-Commerce [16.316227411757797]
We propose a novel extension of online learning methods for re-ranking modeling, which we term LAST.
It circumvents the requirement of user feedback by using a surrogate model to provide the instructional signal needed to steer model improvement.
LAST can be seamlessly integrated into existing online learning systems to create a more adaptive and responsive recommendation experience.
arXiv Detail & Related papers (2024-06-20T05:15:48Z) - Online Matching: A Real-time Bandit System for Large-scale
Recommendations [23.954049092470548]
Online Matching is a scalable closed-loop bandit system learning from users' direct feedback on items in real time.
Diag-LinUCB is a novel extension of the LinUCB algorithm to enable distributed updates of bandits parameter in a scalable and timely manner.
arXiv Detail & Related papers (2023-07-29T05:46:27Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
Sequential recommender models learn to predict the next items a user is likely to interact with based on his/her interaction history on the platform.
Most sequential recommenders however lack a higher-level understanding of user intents, which often drive user behaviors online.
Intent modeling is thus critical for understanding users and optimizing long-term user experience.
arXiv Detail & Related papers (2022-11-17T19:00:24Z) - Multi-Behavior Sequential Recommendation with Temporal Graph Transformer [66.10169268762014]
We tackle the dynamic user-item relation learning with the awareness of multi-behavior interactive patterns.
We propose a new Temporal Graph Transformer (TGT) recommendation framework to jointly capture dynamic short-term and long-range user-item interactive patterns.
arXiv Detail & Related papers (2022-06-06T15:42:54Z) - Proceedings of the 4th Workshop on Online Recommender Systems and User
Modeling -- ORSUM 2021 [9.776323787279148]
The objective of this workshop is to foster contributions and bring together a growing community of researchers and practitioners.
Modern online services continuously generate data at very fast rates.
It is important to investigate online methods able to transparently adapt to the inherent dynamics of online services.
arXiv Detail & Related papers (2022-01-12T19:20:37Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data.
Old and new issues remain, including data-sparsity and noisy data.
We propose Contrastive Self-Supervised Learning for sequential Recommendation (CoSeRec)
arXiv Detail & Related papers (2021-08-14T07:15:25Z) - Non-Stationary Latent Bandits [68.21614490603758]
We propose a practical approach for fast personalization to non-stationary users.
The key idea is to frame this problem as a latent bandit, where prototypical models of user behavior are learned offline and the latent state of the user is inferred online.
We propose Thompson sampling algorithms for regret minimization in non-stationary latent bandits, analyze them, and evaluate them on a real-world dataset.
arXiv Detail & Related papers (2020-12-01T10:31:57Z) - Do Offline Metrics Predict Online Performance in Recommender Systems? [79.48653445643865]
We investigate the extent to which offline metrics predict online performance by evaluating recommenders across six simulated environments.
We observe that offline metrics are correlated with online performance over a range of environments.
We study the impact of adding exploration strategies, and observe that their effectiveness, when compared to greedy recommendation, is highly dependent on the recommendation algorithm.
arXiv Detail & Related papers (2020-11-07T01:41:13Z) - Learning Transferrable Parameters for Long-tailed Sequential User
Behavior Modeling [70.64257515361972]
We argue that focusing on tail users could bring more benefits and address the long tails issue.
Specifically, we propose a gradient alignment and adopt an adversarial training scheme to facilitate knowledge transfer from the head to the tail.
arXiv Detail & Related papers (2020-10-22T03:12:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.