A privacy-preserving distributed credible evidence fusion algorithm for collective decision-making
- URL: http://arxiv.org/abs/2412.02130v1
- Date: Tue, 03 Dec 2024 03:36:42 GMT
- Title: A privacy-preserving distributed credible evidence fusion algorithm for collective decision-making
- Authors: Chaoxiong Ma, Yan Liang, Xinyu Yang, Han Wu, Huixia Zhang,
- Abstract summary: A privacy-preserving distributed credible evidence fusion method with three-level consensus (PCEF) is proposed in this paper.<n>The simulations show that PCEF is close to CCEF both in credibility and fusion results and obtains higher decision accuracy with less time-comsuming than existing methods.
- Score: 16.67762257337951
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The theory of evidence reasoning has been applied to collective decision-making in recent years. However, existing distributed evidence fusion methods lead to participants' preference leakage and fusion failures as they directly exchange raw evidence and do not assess evidence credibility like centralized credible evidence fusion (CCEF) does. To do so, a privacy-preserving distributed credible evidence fusion method with three-level consensus (PCEF) is proposed in this paper. In evidence difference measure (EDM) neighbor consensus, an evidence-free equivalent expression of EDM among neighbored agents is derived with the shared dot product protocol for pignistic probability and the identical judgment of two events with maximal subjective probabilities, so that evidence privacy is guaranteed due to such irreversible evidence transformation. In EDM network consensus, the non-neighbored EDMs are inferred and neighbored EDMs reach uniformity via interaction between linear average consensus (LAC) and low-rank matrix completion with rank adaptation to guarantee EDM consensus convergence and no solution of inferring raw evidence in numerical iteration style. In fusion network consensus, a privacy-preserving LAC with a self-cancelling differential privacy term is proposed, where each agent adds its randomness to the sharing content and step-by-step cancels such randomness in consensus iterations. Besides, the sufficient condition of the convergence to the CCEF is explored, and it is proven that raw evidence is impossibly inferred in such an iterative consensus. The simulations show that PCEF is close to CCEF both in credibility and fusion results and obtains higher decision accuracy with less time-comsuming than existing methods.
Related papers
- Guaranteeing consistency in evidence fusion: A novel perspective on credibility [7.626019758281367]
It is explored that available credible evidence fusion schemes suffer from the potential inconsistency because credibility calculation and Dempster's combination rule-based fusion are sequentially performed in an open-loop style.
This paper proposes an iterative credible evidence fusion (ICEF) to overcome the inconsistency in view of close-loop control.
arXiv Detail & Related papers (2025-04-05T10:12:32Z) - Theoretical Insights in Model Inversion Robustness and Conditional Entropy Maximization for Collaborative Inference Systems [89.35169042718739]
collaborative inference enables end users to leverage powerful deep learning models without exposure of sensitive raw data to cloud servers.
Recent studies have revealed that these intermediate features may not sufficiently preserve privacy, as information can be leaked and raw data can be reconstructed via model inversion attacks (MIAs)
This work first theoretically proves that the conditional entropy of inputs given intermediate features provides a guaranteed lower bound on the reconstruction mean square error (MSE) under any MIA.
Then, we derive a differentiable and solvable measure for bounding this conditional entropy based on the Gaussian mixture estimation and propose a conditional entropy algorithm to enhance the inversion robustness
arXiv Detail & Related papers (2025-03-01T07:15:21Z) - Credible fusion of evidence in distributed system subject to cyberattacks [2.5539863252714636]
This paper proposes an algorithm for credible evidence fusion against cyberattacks.
We focus on three requirements for evidence fusion, i.e., preserving evidence's privacy, identifying attackers and excluding their evidence.
The states of normal nodes are shown to converge to their WAVCCME, while the attacker's evidence is excluded from the fusion.
arXiv Detail & Related papers (2024-11-29T13:46:04Z) - Rectified Diffusion Guidance for Conditional Generation [62.00207951161297]
We revisit the theory behind CFG and rigorously confirm that the improper configuration of the combination coefficients (i.e., the widely used summing-to-one version) brings about expectation shift of the generative distribution.
We propose ReCFG with a relaxation on the guidance coefficients such that denoising with ReCFG strictly aligns with the diffusion theory.
That way the rectified coefficients can be readily pre-computed via traversing the observed data, leaving the sampling speed barely affected.
arXiv Detail & Related papers (2024-10-24T13:41:32Z) - Inter Observer Variability Assessment through Ordered Weighted Belief Divergence Measure in MAGDM Application to the Ensemble Classifier Feature Fusion [1.3586572110652486]
A large number of multi-attribute group decisionmaking (MAGDM) have been widely introduced to obtain consensus results.
This study aims to propose an Evidential MAGDM method by assessing the inter-observational variability and handling uncertainty.
arXiv Detail & Related papers (2024-09-13T00:53:00Z) - Evidential Deep Partial Multi-View Classification With Discount Fusion [24.139495744683128]
We propose a novel framework called Evidential Deep Partial Multi-View Classification (EDP-MVC)
We use K-means imputation to address missing views, creating a complete set of multi-view data.
The potential conflicts and uncertainties within this imputed data can affect the reliability of downstream inferences.
arXiv Detail & Related papers (2024-08-23T14:50:49Z) - Efficient Conformal Prediction under Data Heterogeneity [79.35418041861327]
Conformal Prediction (CP) stands out as a robust framework for uncertainty quantification.
Existing approaches for tackling non-exchangeability lead to methods that are not computable beyond the simplest examples.
This work introduces a new efficient approach to CP that produces provably valid confidence sets for fairly general non-exchangeable data distributions.
arXiv Detail & Related papers (2023-12-25T20:02:51Z) - ELFNet: Evidential Local-global Fusion for Stereo Matching [17.675146012208124]
We introduce the textbfEvidential textbfLocal-global textbfFusion (ELF) framework for stereo matching.
It endows both uncertainty estimation and confidence-aware fusion with trustworthy heads.
arXiv Detail & Related papers (2023-08-01T15:51:04Z) - Conformal Prediction for Federated Uncertainty Quantification Under
Label Shift [57.54977668978613]
Federated Learning (FL) is a machine learning framework where many clients collaboratively train models.
We develop a new conformal prediction method based on quantile regression and take into account privacy constraints.
arXiv Detail & Related papers (2023-06-08T11:54:58Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
Conformal prediction is emerging as a popular paradigm for providing rigorous uncertainty quantification in machine learning.
In this paper, we extend conformal prediction to the federated learning setting.
We propose a weaker notion of partial exchangeability, better suited to the FL setting, and use it to develop the Federated Conformal Prediction framework.
arXiv Detail & Related papers (2023-05-27T19:57:27Z) - Trustworthy Multimodal Regression with Mixture of Normal-inverse Gamma
Distributions [91.63716984911278]
We introduce a novel Mixture of Normal-Inverse Gamma distributions (MoNIG) algorithm, which efficiently estimates uncertainty in principle for adaptive integration of different modalities and produces a trustworthy regression result.
Experimental results on both synthetic and different real-world data demonstrate the effectiveness and trustworthiness of our method on various multimodal regression tasks.
arXiv Detail & Related papers (2021-11-11T14:28:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.