論文の概要: Leveraging Large Language Models for Comparative Literature Summarization with Reflective Incremental Mechanisms
- arxiv url: http://arxiv.org/abs/2412.02149v1
- Date: Tue, 03 Dec 2024 04:09:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:47:57.985611
- Title: Leveraging Large Language Models for Comparative Literature Summarization with Reflective Incremental Mechanisms
- Title(参考訳): 回帰インクリメンタルメカニズムを用いた比較文学要約のための大規模言語モデルの活用
- Authors: Fernando Gabriela Garcia, Spencer Burns, Harrison Fuller,
- Abstract要約: ChatCiteは、比較文学要約を生成するために大きな言語モデル(LLM)を利用する新しい方法である。
注釈付き要約付き1000の研究論文からなるカスタムデータセットCompLit-LongContext上でChatCiteを評価する。
- 参考スコア(独自算出の注目度): 44.99833362998488
- License:
- Abstract: In this paper, we introduce ChatCite, a novel method leveraging large language models (LLMs) for generating comparative literature summaries. The ability to summarize research papers with a focus on key comparisons between studies is an essential task in academic research. Existing summarization models, while effective at generating concise summaries, fail to provide deep comparative insights. ChatCite addresses this limitation by incorporating a multi-step reasoning mechanism that extracts critical elements from papers, incrementally builds a comparative summary, and refines the output through a reflective memory process. We evaluate ChatCite on a custom dataset, CompLit-LongContext, consisting of 1000 research papers with annotated comparative summaries. Experimental results show that ChatCite outperforms several baseline methods, including GPT-4, BART, T5, and CoT, across various automatic evaluation metrics such as ROUGE and the newly proposed G-Score. Human evaluation further confirms that ChatCite generates more coherent, insightful, and fluent summaries compared to these baseline models. Our method provides a significant advancement in automatic literature review generation, offering researchers a powerful tool for efficiently comparing and synthesizing scientific research.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM)を利用した比較文学要約生成手法であるChatCiteを紹介する。
研究論文を,研究間の重要な比較に焦点をあてて要約する能力は,学術研究において不可欠な課題である。
既存の要約モデルは、簡潔な要約を生成するのに効果的であるが、深い比較洞察を得られない。
ChatCiteはこの制限に対処するため、論文から重要な要素を抽出し、比較概要を漸進的に構築し、反射メモリプロセスを通じて出力を洗練する多段階推論機構を導入している。
注釈付き要約付き1000の研究論文からなるカスタムデータセットCompLit-LongContext上でChatCiteを評価する。
実験の結果,ChatCite は GPT-4, BART, T5, CoT など, ROUGE や新たに提案した G-Score などの各種自動評価指標において, 高い性能を示した。
人間の評価はさらに、ChatCiteがこれらのベースラインモデルよりも一貫性があり、洞察力があり、流動的な要約を生成することを確認している。
本手法は,学術研究を効率的に比較・合成するための強力なツールとして,自動文献レビュー生成の大幅な進歩を提供する。
関連論文リスト
- A Comparative Study of Quality Evaluation Methods for Text Summarization [0.5512295869673147]
本稿では,大規模言語モデル(LLM)に基づくテキスト要約評価手法を提案する。
以上の結果から,LLMの評価は人間の評価と密接に一致しているが,ROUGE-2,BERTScore,SummaCなどの広く使用されている自動測定値には一貫性がない。
論文 参考訳(メタデータ) (2024-06-30T16:12:37Z) - Information-Theoretic Distillation for Reference-less Summarization [67.51150817011617]
本稿では,要約のための情報理論的目的に基づいて,強力な要約器を蒸留する新しい枠組みを提案する。
我々は,教師モデルとしてPythia-2.8Bから出発する。
我々は,ChatGPTと競合する5億8800万のパラメータしか持たないコンパクトだが強力な要約器に到達した。
論文 参考訳(メタデータ) (2024-03-20T17:42:08Z) - ChatCite: LLM Agent with Human Workflow Guidance for Comparative
Literature Summary [30.409552944905915]
ChatCiteは、人間によるワークフローガイダンスを備えたLLMエージェントで、比較文学の要約を提供する。
ChatCiteエージェントは実験において様々な次元で他のモデルよりも優れていた。
ChatCiteが生成した文献要約は、文学レビューの起草にも直接使用することができる。
論文 参考訳(メタデータ) (2024-03-05T01:13:56Z) - Multi-Dimensional Evaluation of Text Summarization with In-Context
Learning [79.02280189976562]
本稿では,テキスト内学習を用いた多次元評価器として,大規模言語モデルの有効性について検討する。
実験の結果,テキスト要約作業において,文脈内学習に基づく評価手法が学習評価フレームワークと競合していることが判明した。
次に、テキスト内サンプルの選択や数などの要因がパフォーマンスに与える影響を分析する。
論文 参考訳(メタデータ) (2023-06-01T23:27:49Z) - Large Language Models are Diverse Role-Players for Summarization
Evaluation [82.31575622685902]
文書要約の品質は、文法や正しさといった客観的な基準と、情報性、簡潔さ、魅力といった主観的な基準で人間の注釈者によって評価することができる。
BLUE/ROUGEのような自動評価手法のほとんどは、上記の次元を適切に捉えることができないかもしれない。
目的と主観の両面から生成されたテキストと参照テキストを比較し,総合的な評価フレームワークを提供するLLMに基づく新しい評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-27T10:40:59Z) - Exploring the Limits of ChatGPT for Query or Aspect-based Text
Summarization [28.104696513516117]
GPT3やChatGPTのような大規模言語モデル(LLM)は、テキスト要約タスクにこれらのモデルを使用することに大きな関心を寄せている。
最近の研究では、zhang2023ベンチマーキング(zhang2023benchmarking)は、LLMの生成するニュースサマリーがすでに人間と同等であることを示している。
実験の結果,ChatGPTの性能はルージュスコアの点で従来の微調整手法に匹敵することがわかった。
論文 参考訳(メタデータ) (2023-02-16T04:41:30Z) - Comparing Methods for Extractive Summarization of Call Centre Dialogue [77.34726150561087]
そこで本稿では,これらの手法を用いて呼の要約を生成し,客観的に評価することにより,実験的な比較を行った。
TopicSum と Lead-N は他の要約法よりも優れており,BERTSum は主観的評価と客観的評価の両方で比較的低いスコアを得た。
論文 参考訳(メタデータ) (2022-09-06T13:16:02Z) - A Data-driven Latent Semantic Analysis for Automatic Text Summarization
using LDA Topic Modelling [0.0]
本研究では、トピックモデリングを行うために使用されるLDA(Latent Dirichlet Allocation)アプローチを提案する。
可視化は主要なトピックを概観し、個々のトピックに対する深い意味を許容し、帰結させる。
その結果,処理文書中の話題の出現確率を考慮し,純粋にランク付けされた用語が示唆された。
論文 参考訳(メタデータ) (2022-07-23T11:04:03Z) - ConvoSumm: Conversation Summarization Benchmark and Improved Abstractive
Summarization with Argument Mining [61.82562838486632]
我々は、さまざまなオンライン会話形式のニュースコメント、ディスカッションフォーラム、コミュニティ質問応答フォーラム、電子メールスレッドに関する4つの新しいデータセットをクラウドソースする。
我々は、データセットの最先端モデルをベンチマークし、データに関連する特徴を分析します。
論文 参考訳(メタデータ) (2021-06-01T22:17:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。