論文の概要: Deep Learning, Machine Learning, Advancing Big Data Analytics and Management
- arxiv url: http://arxiv.org/abs/2412.02187v1
- Date: Tue, 03 Dec 2024 05:59:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:43:22.668152
- Title: Deep Learning, Machine Learning, Advancing Big Data Analytics and Management
- Title(参考訳): ディープラーニング、機械学習、ビッグデータ分析と管理の改善
- Authors: Weiche Hsieh, Ziqian Bi, Keyu Chen, Benji Peng, Sen Zhang, Jiawei Xu, Jinlang Wang, Caitlyn Heqi Yin, Yichao Zhang, Pohsun Feng, Yizhu Wen, Tianyang Wang, Ming Li, Chia Xin Liang, Jintao Ren, Qian Niu, Silin Chen, Lawrence K. Q. Yan, Han Xu, Hong-Ming Tseng, Xinyuan Song, Bowen Jing, Junjie Yang, Junhao Song, Junyu Liu, Ming Liu,
- Abstract要約: 人工知能、機械学習、ディープラーニングの進歩は、ビッグデータ分析と管理の変革を触媒している。
本研究は,これらの技術の理論的基礎,方法論的進歩,実践的実装について考察する。
研究者、実践家、データ愛好家は、現代のデータ分析の複雑さをナビゲートするツールを利用できる。
- 参考スコア(独自算出の注目度): 26.911181864764117
- License:
- Abstract: Advancements in artificial intelligence, machine learning, and deep learning have catalyzed the transformation of big data analytics and management into pivotal domains for research and application. This work explores the theoretical foundations, methodological advancements, and practical implementations of these technologies, emphasizing their role in uncovering actionable insights from massive, high-dimensional datasets. The study presents a systematic overview of data preprocessing techniques, including data cleaning, normalization, integration, and dimensionality reduction, to prepare raw data for analysis. Core analytics methodologies such as classification, clustering, regression, and anomaly detection are examined, with a focus on algorithmic innovation and scalability. Furthermore, the text delves into state-of-the-art frameworks for data mining and predictive modeling, highlighting the role of neural networks, support vector machines, and ensemble methods in tackling complex analytical challenges. Special emphasis is placed on the convergence of big data with distributed computing paradigms, including cloud and edge computing, to address challenges in storage, computation, and real-time analytics. The integration of ethical considerations, including data privacy and compliance with global standards, ensures a holistic perspective on data management. Practical applications across healthcare, finance, marketing, and policy-making illustrate the real-world impact of these technologies. Through comprehensive case studies and Python-based implementations, this work equips researchers, practitioners, and data enthusiasts with the tools to navigate the complexities of modern data analytics. It bridges the gap between theory and practice, fostering the development of innovative solutions for managing and leveraging data in the era of artificial intelligence.
- Abstract(参考訳): 人工知能、機械学習、ディープラーニングの進歩は、ビッグデータ分析と管理を研究とアプリケーションのための重要な領域に転換するきっかけとなった。
この研究は、これらの技術の理論的基礎、方法論的進歩、実践的な実装を探求し、大規模で高次元のデータセットから実行可能な洞察を明らかにする上で、それらの役割を強調した。
本研究は,データクリーニング,正規化,統合,次元化といったデータ前処理技術の体系的な概要を示し,分析のための生データを作成する。
アルゴリズムの革新とスケーラビリティに着目し,分類,クラスタリング,回帰,異常検出などのコア分析手法を検討する。
さらに、テキストは、データマイニングと予測モデリングのための最先端のフレームワークを掘り下げ、ニューラルネットワークの役割を強調し、ベクトルマシンをサポートし、複雑な分析課題に取り組むためのアンサンブルメソッドを強調している。
ストレージ、計算、リアルタイム分析の課題に対処するため、クラウドやエッジコンピューティングなど、分散コンピューティングパラダイムによるビッグデータの収束に特に重点を置いている。
データプライバシやグローバル標準への準拠など、倫理的考慮事項の統合は、データ管理の全体的視点を保証する。
医療、金融、マーケティング、政策立案などにわたる実践的な応用は、これらの技術の現実的な影響を示している。
包括的なケーススタディとPythonベースの実装を通じて、この作業は研究者、実践家、データ愛好家に対して、現代のデータ分析の複雑さをナビゲートするツールを提供する。
理論と実践のギャップを埋め、人工知能の時代におけるデータの管理と活用のための革新的なソリューションの開発を促進する。
関連論文リスト
- Deep Learning and Machine Learning -- Object Detection and Semantic Segmentation: From Theory to Applications [17.571124565519263]
オブジェクト検出とセマンティックセグメンテーションの詳細な探索を行う。
機械学習とディープラーニングの最先端を概観する。
ビッグデータ処理の解析について述べる。
論文 参考訳(メタデータ) (2024-10-21T02:10:49Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - DISCOVER: A Data-driven Interactive System for Comprehensive Observation, Visualization, and ExploRation of Human Behaviour [6.716560115378451]
我々は,人間行動分析のための計算駆動型データ探索を効率化するために,モジュール型でフレキシブルでユーザフレンドリなソフトウェアフレームワークを導入する。
我々の主な目的は、高度な計算方法論へのアクセスを民主化することであり、これにより研究者は、広範囲の技術的熟練を必要とせずに、詳細な行動分析を行うことができる。
論文 参考訳(メタデータ) (2024-07-18T11:28:52Z) - Data Augmentation in Human-Centric Vision [54.97327269866757]
本研究では,人間中心型視覚タスクにおけるデータ拡張手法の包括的分析を行う。
それは、人物のReID、人間のパーシング、人間のポーズ推定、歩行者検出など、幅広い研究領域に展開している。
我々の研究は、データ拡張手法をデータ生成とデータ摂動の2つの主なタイプに分類する。
論文 参考訳(メタデータ) (2024-03-13T16:05:18Z) - Benchmarking Data Science Agents [11.582116078653968]
大規模言語モデル(LLM)は、データサイエンスエージェントとして有望な支援として登場し、データ分析と処理において人間を支援している。
しかし、現実の応用の様々な要求と複雑な分析プロセスによって、それらの実用的有効性は依然として制限されている。
我々は、新しい評価パラダイムであるDSEvalと、これらのエージェントの性能を評価するための一連の革新的なベンチマークを紹介する。
論文 参考訳(メタデータ) (2024-02-27T03:03:06Z) - On Responsible Machine Learning Datasets with Fairness, Privacy, and Regulatory Norms [56.119374302685934]
AI技術の信頼性に関する深刻な懸念があった。
機械学習とディープラーニングのアルゴリズムは、開発に使用されるデータに大きく依存する。
本稿では,責任あるルーブリックを用いてデータセットを評価するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-24T14:01:53Z) - On Efficient Training of Large-Scale Deep Learning Models: A Literature
Review [90.87691246153612]
ディープラーニングの分野は特にコンピュータビジョン(CV)、自然言語処理(NLP)、音声などにおいて大きな進歩を遂げている。
大量のデータに基づいてトレーニングされた大規模なモデルを使用することは、実用的なアプリケーションにとって大きな可能性を秘めている。
計算能力の需要が増大する中で、ディープラーニングモデルの訓練の加速技術に関する包括的な要約が期待されている。
論文 参考訳(メタデータ) (2023-04-07T11:13:23Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
我々は,データ拡張アルゴリズムの適用分野,使用するアルゴリズムの種類,重要な研究動向,時間経過に伴う研究の進展,およびデータ拡張文学における研究ギャップを同定する。
我々は、読者がデータ拡張の可能性を理解し、将来の研究方向を特定し、データ拡張研究の中で質問を開くことを期待する。
論文 参考訳(メタデータ) (2022-07-18T11:38:32Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
このレビューは、現在利用可能な機械学習とデータ分析のための最先端ライブラリとフレームワークに関する包括的なビジョンを提供することを目的としている。
現在利用可能なEdge-to-Cloud Continuumに関する実験的な研究のための、主要なシミュレーション、エミュレーション、デプロイメントシステム、テストベッドも調査されている。
論文 参考訳(メタデータ) (2022-04-29T08:06:05Z) - A Survey on Deep Reinforcement Learning for Data Processing and
Analytics [14.88856391719732]
深層強化学習を活用したデータ処理と分析の改善に焦点をあてた最近の研究成果を概観する。
まず, 深層強化学習における鍵となる概念, 理論, 方法を紹介する。
次に、データベースシステムにおける深層強化学習の展開について論じ、データ処理と分析を容易にする。
論文 参考訳(メタデータ) (2021-08-10T09:14:03Z) - Towards an Integrated Platform for Big Data Analysis [4.5257812998381315]
本稿では,これらすべての側面を統合した,ビッグデータ解析のための統合型プレート形式のビジョンについて述べる。
このアプローチの主な利点は、プラットフォーム全体の拡張スケーラビリティ、アルゴリズムのパラメータ化の改善、エンドツーエンドのデータ分析プロセスにおけるユーザビリティの改善である。
論文 参考訳(メタデータ) (2020-04-27T03:15:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。