ESA: Example Sieve Approach for Multi-Positive and Unlabeled Learning
- URL: http://arxiv.org/abs/2412.02240v1
- Date: Tue, 03 Dec 2024 08:09:06 GMT
- Title: ESA: Example Sieve Approach for Multi-Positive and Unlabeled Learning
- Authors: Zhongnian Li, Meng Wei, Peng Ying, Xinzheng Xu,
- Abstract summary: We propose an Example Sieve Approach (ESA) to select examples for training a multi-class classifier.
Specifically, we sieve out some examples by utilizing the Certain Loss (CL) value of each example in the training stage.
We show that the estimation error of proposed ESA obtains the optimal parametric convergence rate.
- Score: 5.016605351534376
- License:
- Abstract: Learning from Multi-Positive and Unlabeled (MPU) data has gradually attracted significant attention from practical applications. Unfortunately, the risk of MPU also suffer from the shift of minimum risk, particularly when the models are very flexible as shown in Fig.\ref{moti}. In this paper, to alleviate the shifting of minimum risk problem, we propose an Example Sieve Approach (ESA) to select examples for training a multi-class classifier. Specifically, we sieve out some examples by utilizing the Certain Loss (CL) value of each example in the training stage and analyze the consistency of the proposed risk estimator. Besides, we show that the estimation error of proposed ESA obtains the optimal parametric convergence rate. Extensive experiments on various real-world datasets show the proposed approach outperforms previous methods.
Related papers
- Exogenous Matching: Learning Good Proposals for Tractable Counterfactual Estimation [1.9662978733004601]
We propose an importance sampling method for tractable and efficient estimation of counterfactual expressions.
By minimizing a common upper bound of counterfactual estimators, we transform the variance minimization problem into a conditional distribution learning problem.
We validate the theoretical results through experiments under various types and settings of Structural Causal Models (SCMs) and demonstrate the outperformance on counterfactual estimation tasks.
arXiv Detail & Related papers (2024-10-17T03:08:28Z) - Multiple Testing of Linear Forms for Noisy Matrix Completion [14.496082411670677]
We develop a general approach to overcome difficulties by introducing new statistics for individual tests with sharp new statistics.
We show that valid FDR control can be achieved with guaranteed power under nearly optimal sample size requirements.
arXiv Detail & Related papers (2023-12-01T02:53:20Z) - A VAE Approach to Sample Multivariate Extremes [6.548734807475054]
This paper describes a variational autoencoder (VAE) approach for sampling heavy-tailed distributions likely to have extremes of particularly large intensities.
We illustrate the relevance of our approach on a synthetic data set and on a real data set of discharge measurements along the Danube river network.
In addition to outperforming the standard VAE for the tested data sets, we also provide a comparison with a competing EVT-based generative approach.
arXiv Detail & Related papers (2023-06-19T14:53:40Z) - Risk Consistent Multi-Class Learning from Label Proportions [64.0125322353281]
This study addresses a multiclass learning from label proportions (MCLLP) setting in which training instances are provided in bags.
Most existing MCLLP methods impose bag-wise constraints on the prediction of instances or assign them pseudo-labels.
A risk-consistent method is proposed for instance classification using the empirical risk minimization framework.
arXiv Detail & Related papers (2022-03-24T03:49:04Z) - Multi-label Contrastive Predictive Coding [125.03510235962095]
Variational mutual information (MI) estimators are widely used in unsupervised representation learning methods such as contrastive predictive coding (CPC)
We introduce a novel estimator based on a multi-label classification problem, where the critic needs to jointly identify multiple positive samples at the same time.
We show that using the same amount of negative samples, multi-label CPC is able to exceed the $log m$ bound, while still being a valid lower bound of mutual information.
arXiv Detail & Related papers (2020-07-20T02:46:21Z) - A One-step Approach to Covariate Shift Adaptation [82.01909503235385]
A default assumption in many machine learning scenarios is that the training and test samples are drawn from the same probability distribution.
We propose a novel one-step approach that jointly learns the predictive model and the associated weights in one optimization.
arXiv Detail & Related papers (2020-07-08T11:35:47Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBA is a framework for safe reinforcement learning that combines aspects from probabilistic modelling, information theory, and statistics.
We evaluate our algorithm on a variety of safe dynamical system benchmarks involving both low and high-dimensional state representations.
We provide intuition as to the effectiveness of the framework by a detailed analysis of our active metrics and safety constraints.
arXiv Detail & Related papers (2020-06-12T10:40:46Z) - Learning the Truth From Only One Side of the Story [58.65439277460011]
We focus on generalized linear models and show that without adjusting for this sampling bias, the model may converge suboptimally or even fail to converge to the optimal solution.
We propose an adaptive approach that comes with theoretical guarantees and show that it outperforms several existing methods empirically.
arXiv Detail & Related papers (2020-06-08T18:20:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.