GQWformer: A Quantum-based Transformer for Graph Representation Learning
- URL: http://arxiv.org/abs/2412.02285v1
- Date: Tue, 03 Dec 2024 09:03:04 GMT
- Title: GQWformer: A Quantum-based Transformer for Graph Representation Learning
- Authors: Lei Yu, Hongyang Chen, Jingsong Lv, Linyao Yang,
- Abstract summary: We propose a novel approach that integrate graph inductive bias into self-attention mechanisms by leveraging quantum technology for structural encoding.
We introduce the Graph Quantum Walk Transformer (GQWformer), a groundbreaking GNN framework that utilizes quantum walks on attributed graphs to generate node quantum states.
These quantum states encapsulate rich structural attributes and serve as inductive biases for the transformer, thereby enabling the generation of more meaningful attention scores.
- Score: 15.97445757658235
- License:
- Abstract: Graph Transformers (GTs) have demonstrated significant advantages in graph representation learning through their global attention mechanisms. However, the self-attention mechanism in GTs tends to neglect the inductive biases inherent in graph structures, making it chanllenging to effectively capture essential structural information. To address this issue, we propose a novel approach that integrate graph inductive bias into self-attention mechanisms by leveraging quantum technology for structural encoding. In this paper, we introduce the Graph Quantum Walk Transformer (GQWformer), a groundbreaking GNN framework that utilizes quantum walks on attributed graphs to generate node quantum states. These quantum states encapsulate rich structural attributes and serve as inductive biases for the transformer, thereby enabling the generation of more meaningful attention scores. By subsequently incorporating a recurrent neural network, our design amplifies the model's ability to focus on both local and global information. We conducted comprehensive experiments across five publicly available datasets to evaluate the effectiveness of our model. These results clearly indicate that GQWformer outperforms existing state-of-the-art graph classification algorithms. These findings highlight the significant potential of integrating quantum computing methodologies with traditional GNNs to advance the field of graph representation learning, providing a promising direction for future research and applications.
Related papers
- What Improves the Generalization of Graph Transformers? A Theoretical Dive into the Self-attention and Positional Encoding [67.59552859593985]
Graph Transformers, which incorporate self-attention and positional encoding, have emerged as a powerful architecture for various graph learning tasks.
This paper introduces first theoretical investigation of a shallow Graph Transformer for semi-supervised classification.
arXiv Detail & Related papers (2024-06-04T05:30:16Z) - Quantum Positional Encodings for Graph Neural Networks [1.9791587637442671]
We propose novel families of positional encodings tailored to graph neural networks obtained with quantum computers.
Our inspiration stems from the recent advancements in quantum processing units, which offer computational capabilities beyond the reach of classical hardware.
arXiv Detail & Related papers (2024-05-21T17:56:33Z) - Gradformer: Graph Transformer with Exponential Decay [69.50738015412189]
Self-attention mechanism in Graph Transformers (GTs) overlooks the graph's inductive biases, particularly biases related to structure.
This paper presents Gradformer, a method innovatively integrating GT with the intrinsic inductive bias.
Gradformer consistently outperforms the Graph Neural Network and GT baseline models in various graph classification and regression tasks.
arXiv Detail & Related papers (2024-04-24T08:37:13Z) - Graph Transformers without Positional Encodings [0.7252027234425334]
We introduce Eigenformer, a Graph Transformer employing a novel spectrum-aware attention mechanism cognizant of the Laplacian spectrum of the graph.
We empirically show that it achieves performance competetive with SOTA Graph Transformers on a number of standard GNN benchmarks.
arXiv Detail & Related papers (2024-01-31T12:33:31Z) - Enhancing Graph Neural Networks with Quantum Computed Encodings [1.884651553431727]
We propose novel families of positional encodings tailored for graph transformers.
These encodings leverage the long-range correlations inherent in quantum systems.
We show that the performance of state-of-the-art models can be improved on standard benchmarks and large-scale datasets.
arXiv Detail & Related papers (2023-10-31T14:56:52Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Extending Graph Transformers with Quantum Computed Aggregation [0.0]
We introduce a GNN architecture where the aggregation weights are computed using the long-range correlations of a quantum system.
These correlations are generated by translating the graph topology into the interactions of a set of qubits in a quantum computer.
arXiv Detail & Related papers (2022-10-19T14:56:15Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
Heterogeneous graph neural networks (HGNNs) have powerful capability to embed rich structural and semantic information of a heterogeneous graph into node representations.
Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) over homogeneous graphs, especially the attention mechanism and the multi-layer structure.
This paper conducts an in-depth and detailed study of these mechanisms and proposes Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN)
arXiv Detail & Related papers (2022-07-06T10:01:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.