Initial Study On Improving Segmentation By Combining Preoperative CT And Intraoperative CBCT Using Synthetic Data
- URL: http://arxiv.org/abs/2412.02294v1
- Date: Tue, 03 Dec 2024 09:08:38 GMT
- Title: Initial Study On Improving Segmentation By Combining Preoperative CT And Intraoperative CBCT Using Synthetic Data
- Authors: Maximilian E. Tschuchnig, Philipp Steininger, Michael Gadermayr,
- Abstract summary: Cone-beam computed tomography (CBCT) can be used to facilitate computer-assisted interventions.
The availability of high quality, preoperative scans offers potential for improvements.
We propose a multimodal learning method that fuses roughly aligned CBCT and CT scans.
- Score: 0.21847754147782888
- License:
- Abstract: Computer-Assisted Interventions enable clinicians to perform precise, minimally invasive procedures, often relying on advanced imaging methods. Cone-beam computed tomography (CBCT) can be used to facilitate computer-assisted interventions, despite often suffering from artifacts that pose challenges for accurate interpretation. While the degraded image quality can affect image analysis, the availability of high quality, preoperative scans offers potential for improvements. Here we consider a setting where preoperative CT and intraoperative CBCT scans are available, however, the alignment (registration) between the scans is imperfect to simulate a real world scenario. We propose a multimodal learning method that fuses roughly aligned CBCT and CT scans and investigate the effect on segmentation performance. For this experiment we use synthetically generated data containing real CT and synthetic CBCT volumes with corresponding voxel annotations. We show that this fusion setup improves segmentation performance in $18$ out of $20$ investigated setups.
Related papers
- ARTInp: CBCT-to-CT Image Inpainting and Image Translation in Radiotherapy [1.70645147263353]
ARTInp is a novel deep-learning framework combining image inpainting and CBCT-to-CT translation.
We trained ARTInp on a dataset of paired CBCT and CT images from the SynthRad 2023 challenge.
arXiv Detail & Related papers (2025-02-07T13:04:25Z) - Improving Cone-Beam CT Image Quality with Knowledge Distillation-Enhanced Diffusion Model in Imbalanced Data Settings [6.157230849293829]
Daily cone-beam CT (CBCT) imaging, pivotal for therapy adjustment, falls short in tissue density accuracy.
We maximize CBCT data during therapy, complemented by sparse paired fan-beam CTs.
Our approach shows promise in generating high-quality CT images from CBCT scans in RT.
arXiv Detail & Related papers (2024-09-19T07:56:06Z) - Multimodal Learning With Intraoperative CBCT & Variably Aligned Preoperative CT Data To Improve Segmentation [0.21847754147782888]
Cone-beam computed tomography (CBCT) is an important tool facilitating computer aided interventions.
While the degraded image quality can affect downstream segmentation, the availability of high quality, preoperative scans represents potential for improvements.
We propose a multimodal learning method that fuses roughly aligned CBCT and CT scans and investigate the effect of CBCT quality and misalignment on the final segmentation performance.
arXiv Detail & Related papers (2024-06-17T15:31:54Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - A multi-channel cycleGAN for CBCT to CT synthesis [0.0]
Image synthesis is used to generate synthetic CTs from on-treatment cone-beam CTs (CBCTs)
Our contribution focuses on the second task, CBCT-to-sCT synthesis.
By leveraging a multi-channel input to emphasize specific image features, our approach effectively addresses some of the challenges inherent in CBCT imaging.
arXiv Detail & Related papers (2023-12-04T16:40:53Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for
Non-Contrast to Contrast CT Translation [56.622832383316215]
We propose a novel approach to translate unpaired contrast computed tomography (CT) scans to non-contrast CT scans.
Our approach is based on cycle-consistent generative adversarial convolutional transformers, for short, CyTran.
Our empirical results show that CyTran outperforms all competing methods.
arXiv Detail & Related papers (2021-10-12T23:25:03Z) - Multitask 3D CBCT-to-CT Translation and Organs-at-Risk Segmentation
Using Physics-Based Data Augmentation [4.3971310109651665]
In current clinical practice, noisy and artifact-ridden weekly cone-beam computed tomography (CBCT) images are only used for patient setup during radiotherapy.
Treatment planning is done once at the beginning of the treatment using high-quality planning CT (pCT) images and manual contours for organs-at-risk (OARs) structures.
If the quality of the weekly CBCT images can be improved while simultaneously segmenting OAR structures, this can provide critical information for adapting radiotherapy mid-treatment and for deriving biomarkers for treatment response.
arXiv Detail & Related papers (2021-03-09T19:51:44Z) - Detecting Pancreatic Ductal Adenocarcinoma in Multi-phase CT Scans via
Alignment Ensemble [77.5625174267105]
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers among the population.
Multiple phases provide more information than single phase, but they are unaligned and inhomogeneous in texture.
We suggest an ensemble of all these alignments as a promising way to boost the performance of PDAC detection.
arXiv Detail & Related papers (2020-03-18T19:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.