論文の概要: CADMR: Cross-Attention and Disentangled Learning for Multimodal Recommender Systems
- arxiv url: http://arxiv.org/abs/2412.02295v1
- Date: Tue, 03 Dec 2024 09:09:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:50:55.281939
- Title: CADMR: Cross-Attention and Disentangled Learning for Multimodal Recommender Systems
- Title(参考訳): CADMR:マルチモーダルレコメンダシステムのためのクロスアテンションとディスタングル学習
- Authors: Yasser Khalafaoui, Martino Lovisetto, Basarab Matei, Nistor Grozavu,
- Abstract要約: 本稿では,新しいオートエンコーダに基づくマルチモーダルレコメンデータシステムCADMRを提案する。
CADMRを3つのベンチマークデータセット上で評価し,最先端の手法よりも優れた性能を示した。
- 参考スコア(独自算出の注目度): 0.6037276428689637
- License:
- Abstract: The increasing availability and diversity of multimodal data in recommender systems offer new avenues for enhancing recommendation accuracy and user satisfaction. However, these systems must contend with high-dimensional, sparse user-item rating matrices, where reconstructing the matrix with only small subsets of preferred items for each user poses a significant challenge. To address this, we propose CADMR, a novel autoencoder-based multimodal recommender system framework. CADMR leverages multi-head cross-attention mechanisms and Disentangled Learning to effectively integrate and utilize heterogeneous multimodal data in reconstructing the rating matrix. Our approach first disentangles modality-specific features while preserving their interdependence, thereby learning a joint latent representation. The multi-head cross-attention mechanism is then applied to enhance user-item interaction representations with respect to the learned multimodal item latent representations. We evaluate CADMR on three benchmark datasets, demonstrating significant performance improvements over state-of-the-art methods.
- Abstract(参考訳): レコメンデーションシステムにおけるマルチモーダルデータの可用性と多様性の向上は、レコメンデーション精度とユーザ満足度を高めるための新たな手段を提供する。
しかし,これらのシステムでは,各ユーザの好む項目の小さなサブセットのみを用いて行列を再構築するという,高次元で疎い評価行列と競合する必要があり,大きな課題が生じる。
そこで本研究では,新しいオートエンコーダベースのマルチモーダルレコメンデータシステムであるCADMRを提案する。
CADMRはマルチヘッド・クロスアテンション機構とディスタングル・ラーニングを活用して、評価行列の再構築に異質なマルチモーダルデータを効果的に活用する。
提案手法はまず,相互依存を保ちながらモダリティに特有な特徴を分離し,共同潜在表現を学習する。
次に、学習したマルチモーダルアイテム潜在表現に関して、ユーザとイテムの相互作用表現を強化するために、マルチヘッドのクロスアテンション機構を適用した。
CADMRを3つのベンチマークデータセット上で評価し,最先端の手法よりも優れた性能を示した。
関連論文リスト
- Learning ID-free Item Representation with Token Crossing for Multimodal Recommendation [26.737971605928358]
我々はMOTORというIDのないマルチモーダルトークン表現方式を提案する。
まず、各項目のマルチモーダル特徴を離散トークンIDに識別するために、製品量子化を用いる。
次に、これらのトークンIDに対応するトークン埋め込みを暗黙のアイテム機能として解釈する。
結果として得られた表現は、元のID埋め込みを置き換え、元のマルチモーダルレコメンデータをIDフリーシステムに変換することができる。
論文 参考訳(メタデータ) (2024-10-25T03:06:10Z) - A Unified Graph Transformer for Overcoming Isolations in Multi-modal Recommendation [9.720586396359906]
既存のマルチモーダルレコメンダシステムは、通常、特徴抽出とモダリティモデリングの両方に分離されたプロセスを使用する。
本稿では, マルチウェイ変換器を用いて, 整列したマルチモーダル特徴を抽出するUnified Multi-modal Graph Transformer (UGT) という新しいモデルを提案する。
UGTモデルは, 一般的に使用されるマルチモーダルレコメンデーション損失と共同最適化した場合に, 特に有意な有効性が得られることを示す。
論文 参考訳(メタデータ) (2024-07-29T11:04:31Z) - MMGRec: Multimodal Generative Recommendation with Transformer Model [81.61896141495144]
MMGRecは、マルチモーダルレコメンデーションに生成パラダイムを導入することを目指している。
まず,階層的な量子化手法であるGraph CF-RQVAEを考案し,各項目にRec-IDを割り当てる。
次に、Transformerベースのレコメンデータをトレーニングし、過去のインタラクションシーケンスに基づいて、ユーザが推奨するアイテムのRec-IDを生成する。
論文 参考訳(メタデータ) (2024-04-25T12:11:27Z) - AlignRec: Aligning and Training in Multimodal Recommendations [29.995007279325947]
マルチモーダル・レコメンデーションは 相互作用を超えて 豊かなコンテキストを活用できる
既存の手法では、主に多モーダル情報を補助的なものとみなし、それを用いてIDの特徴を学習する。
マルチモーダルコンテンツの特徴とIDベースの特徴の間にはセマンティックなギャップがあり、それによってユーザやアイテムの表現の誤調整につながる。
論文 参考訳(メタデータ) (2024-03-19T02:49:32Z) - BiVRec: Bidirectional View-based Multimodal Sequential Recommendation [55.87443627659778]
我々は,IDとマルチモーダルの両方で推薦タスクを共同で訓練する,革新的なフレームワークであるBivRecを提案する。
BivRecは5つのデータセットで最先端のパフォーマンスを達成し、様々な実用的な利点を示している。
論文 参考訳(メタデータ) (2024-02-27T09:10:41Z) - Feature Decoupling-Recycling Network for Fast Interactive Segmentation [79.22497777645806]
近年のインタラクティブセグメンテーション手法では,入力としてソースイメージ,ユーザガイダンス,従来予測されていたマスクを反復的に取り込んでいる。
本稿では,本質的な相違点に基づいてモデリングコンポーネントを分離するFDRN(Feature Decoupling-Recycling Network)を提案する。
論文 参考訳(メタデータ) (2023-08-07T12:26:34Z) - Choosing the Best of Both Worlds: Diverse and Novel Recommendations
through Multi-Objective Reinforcement Learning [68.45370492516531]
本稿では,Recommender Systems (RS) 設定のための拡張多目的強化学習(SMORL)を紹介する。
SMORLエージェントは、標準レコメンデーションモデルを拡張し、RLレイヤーを追加し、3つの主要な目的(正確性、多様性、新しいレコメンデーション)を同時に満たすように強制する。
実世界の2つのデータセットに対する実験結果から,集約的多様性の顕著な増加,精度の適度な向上,レコメンデーションの反復性の低下,および相補的目的としての多様性と新規性の強化の重要性が示された。
論文 参考訳(メタデータ) (2021-10-28T13:22:45Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
本研究では,ユーザとレコメンデータシステムにおける項目間の多種類の対話パターンを探索する知識強化階層型グラフトランスフォーマネットワーク(KHGT)を提案する。
KHGTはグラフ構造化ニューラルネットワーク上に構築され、タイプ固有の振る舞い特性をキャプチャする。
KHGTは、様々な評価設定において、最先端のレコメンデーション手法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2021-10-08T09:44:00Z) - Lightweight Self-Attentive Sequential Recommendation [30.048184102259494]
シーケンシャルレコメンデーションのために,新しい軽量自己注意ネットワーク(LSAN)を導入する。
元の埋め込み行列を積極的に圧縮するために、LSANは構成埋め込みの概念を利用する。
本稿では,各項目の内在的ダイナミクスを考慮し,時間的文脈認識型埋め込み合成スキームを提案する。
論文 参考訳(メタデータ) (2021-08-25T16:46:47Z) - Federated Multi-view Matrix Factorization for Personalized
Recommendations [53.74747022749739]
本稿では,フェデレートされた学習フレームワークを,複数のデータソースを用いた行列分解に拡張する,フェデレートされたマルチビュー行列分解手法を提案する。
本手法では,ユーザの個人情報を中央サーバに転送することなく,マルチビューモデルを学習することができる。
論文 参考訳(メタデータ) (2020-04-08T21:07:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。