Controlling the Latent Diffusion Model for Generative Image Shadow Removal via Residual Generation
- URL: http://arxiv.org/abs/2412.02322v1
- Date: Tue, 03 Dec 2024 09:38:14 GMT
- Title: Controlling the Latent Diffusion Model for Generative Image Shadow Removal via Residual Generation
- Authors: Xinjie Li, Yang Zhao, Dong Wang, Yuan Chen, Li Cao, Xiaoping Liu,
- Abstract summary: Large-scale generative models often generate diverse, realistic details without adequate focus on fidelity.
This paper utilizes diffusion models to generate and refine image residuals.
To revent the accumulation of errors during the generation process, a crosstimestep self-enhancement training strategy is proposed.
- Score: 18.514154007772337
- License:
- Abstract: Large-scale generative models have achieved remarkable advancements in various visual tasks, yet their application to shadow removal in images remains challenging. These models often generate diverse, realistic details without adequate focus on fidelity, failing to meet the crucial requirements of shadow removal, which necessitates precise preservation of image content. In contrast to prior approaches that aimed to regenerate shadow-free images from scratch, this paper utilizes diffusion models to generate and refine image residuals. This strategy fully uses the inherent detailed information within shadowed images, resulting in a more efficient and faithful reconstruction of shadow-free content. Additionally, to revent the accumulation of errors during the generation process, a crosstimestep self-enhancement training strategy is proposed. This strategy leverages the network itself to augment the training data, not only increasing the volume of data but also enabling the network to dynamically correct its generation trajectory, ensuring a more accurate and robust output. In addition, to address the loss of original details in the process of image encoding and decoding of large generative models, a content-preserved encoder-decoder structure is designed with a control mechanism and multi-scale skip connections to achieve high-fidelity shadow-free image reconstruction. Experimental results demonstrate that the proposed method can reproduce high-quality results based on a large latent diffusion prior and faithfully preserve the original contents in shadow regions.
Related papers
- Generative Portrait Shadow Removal [27.98144439007323]
We introduce a high-fidelity portrait shadow removal model that can effectively enhance the image of a portrait.
Our method also demonstrates robustness to diverse subjects captured in real environments.
arXiv Detail & Related papers (2024-10-07T22:09:22Z) - Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration [19.87693298262894]
We propose Diff-Restorer, a universal image restoration method based on the diffusion model.
We utilize the pre-trained visual language model to extract visual prompts from degraded images.
We also design a Degradation-aware Decoder to perform structural correction and convert the latent code to the pixel domain.
arXiv Detail & Related papers (2024-07-04T05:01:10Z) - Active Generation for Image Classification [45.93535669217115]
We propose to address the efficiency of image generation by focusing on the specific needs and characteristics of the model.
With a central tenet of active learning, our method, named ActGen, takes a training-aware approach to image generation.
arXiv Detail & Related papers (2024-03-11T08:45:31Z) - Latent Feature-Guided Diffusion Models for Shadow Removal [50.02857194218859]
We propose the use of diffusion models as they offer a promising approach to gradually refine the details of shadow regions during the diffusion process.
Our method improves this process by conditioning on a learned latent feature space that inherits the characteristics of shadow-free images.
We demonstrate the effectiveness of our approach which outperforms the previous best method by 13% in terms of RMSE on the AISTD dataset.
arXiv Detail & Related papers (2023-12-04T18:59:55Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusion is a framework for zero-shot conditional image generation using a diffusion model trained for unconditional generation.
We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution.
arXiv Detail & Related papers (2023-09-30T02:03:22Z) - Deshadow-Anything: When Segment Anything Model Meets Zero-shot shadow
removal [8.555176637147648]
We develop Deshadow-Anything, considering the generalization of large-scale datasets, to achieve image shadow removal.
The diffusion model can diffuse along the edges and textures of an image, helping to remove shadows while preserving the details of the image.
Experiments on shadow removal tasks demonstrate that these methods can effectively improve image restoration performance.
arXiv Detail & Related papers (2023-09-21T01:35:13Z) - ShadowDiffusion: When Degradation Prior Meets Diffusion Model for Shadow
Removal [74.86415440438051]
We propose a unified diffusion framework that integrates both the image and degradation priors for highly effective shadow removal.
Our model achieves a significant improvement in terms of PSNR, increasing from 31.69dB to 34.73dB over SRD dataset.
arXiv Detail & Related papers (2022-12-09T07:48:30Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - Invertible Image Rescaling [118.2653765756915]
We develop an Invertible Rescaling Net (IRN) to produce visually-pleasing low-resolution images.
We capture the distribution of the lost information using a latent variable following a specified distribution in the downscaling process.
arXiv Detail & Related papers (2020-05-12T09:55:53Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.