論文の概要: VISTA: A Panoramic View of Neural Representations
- arxiv url: http://arxiv.org/abs/2412.02412v1
- Date: Tue, 03 Dec 2024 12:12:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:51:08.659426
- Title: VISTA: A Panoramic View of Neural Representations
- Title(参考訳): VISTA: 神経表現のパノラマ的視点
- Authors: Tom White,
- Abstract要約: 本稿では、ニューラルネットワーク表現を視覚的に探索し解釈するための新しいパイプラインであるVISTA(Visualization of Internal States and their Associations)を紹介する。
我々は、表現を意味的な2次元空間にマッピングすることで、現代の機械学習モデルにおける広大な多次元空間を分析するという課題に対処する。
VISTAの実用性は、新しい特性と解釈を明らかにするスパースオートエンコーダラプタントに適用することで実証する。
- 参考スコア(独自算出の注目度): 0.6993026261767287
- License:
- Abstract: We present VISTA (Visualization of Internal States and Their Associations), a novel pipeline for visually exploring and interpreting neural network representations. VISTA addresses the challenge of analyzing vast multidimensional spaces in modern machine learning models by mapping representations into a semantic 2D space. The resulting collages visually reveal patterns and relationships within internal representations. We demonstrate VISTA's utility by applying it to sparse autoencoder latents uncovering new properties and interpretations. We review the VISTA methodology, present findings from our case study ( https://got.drib.net/latents/ ), and discuss implications for neural network interpretability across various domains of machine learning.
- Abstract(参考訳): 本稿では、ニューラルネットワーク表現を視覚的に探索し解釈するための新しいパイプラインであるVISTA(Visualization of Internal States and their Associations)を紹介する。
VISTAは、表現を意味的な2D空間にマッピングすることで、現代の機械学習モデルにおける広大な多次元空間を分析するという課題に対処する。
結果として得られたコラージュは、内部表現内のパターンと関係を視覚的に明らかにする。
VISTAの実用性は、新しい特性と解釈を明らかにするスパースオートエンコーダラプタントに適用することで実証する。
本稿では,VISTA手法を概説するとともに,機械学習のさまざまな領域におけるニューラルネットワークの解釈可能性への影響について考察する。
関連論文リスト
- Fill in the blanks: Rethinking Interpretability in vision [0.0]
我々は、新しい視点から視覚モデルの説明可能性を再考し、トレーニング中にモデルが学習した一般的な入力構造を探索する。
標準的なビジョンデータセットと事前トレーニングされたモデルの実験は、一貫性のあるパターンを明らかにし、追加のモデルに依存しない説明可能性ツールとして解釈できる。
論文 参考訳(メタデータ) (2024-11-15T15:31:06Z) - Learning Object-Centric Representation via Reverse Hierarchy Guidance [73.05170419085796]
OCL(Object-Centric Learning)は、ニューラルネットワークが視覚的なシーンで個々のオブジェクトを識別できるようにする。
RHGNetは、トレーニングと推論プロセスにおいて、さまざまな方法で機能するトップダウンパスを導入している。
我々のモデルは、よく使われる複数のデータセット上でSOTA性能を達成する。
論文 参考訳(メタデータ) (2024-05-17T07:48:27Z) - Visualizing Routes with AI-Discovered Street-View Patterns [4.153397474276339]
本稿では,視覚的特徴の定量化にセマンティック潜在ベクトルを用いる手法を提案する。
街路ビュー画像の集合間の画像類似度を計算し,空間像パターンの探索を行う。
インタラクティブな可視化プロトタイプであるVivaRoutesを紹介し、これらのパターンで視覚化がどのように活用され、ユーザーが複数のルートを効果的かつインタラクティブに探索するのに役立つかを示す。
論文 参考訳(メタデータ) (2024-03-30T17:32:26Z) - Seeing in Words: Learning to Classify through Language Bottlenecks [59.97827889540685]
人間は簡潔で直感的な説明を使って予測を説明することができる。
特徴表現がテキストである視覚モデルでは,画像ネットイメージを効果的に分類できることを示す。
論文 参考訳(メタデータ) (2023-06-29T00:24:42Z) - Formal Conceptual Views in Neural Networks [0.0]
本稿では,ニューラルネットワークの概念的視点,特に多値・記号的視点の2つの概念を紹介する。
我々は、ImageNetとFruit-360データセットの異なる実験を通して、新しいビューの概念的表現性をテストする。
本研究では,ニューロンからの人間の理解可能なルールの帰納的学習に概念的視点が適用可能であることを実証する。
論文 参考訳(メタデータ) (2022-09-27T16:38:24Z) - A domain adaptive deep learning solution for scanpath prediction of
paintings [66.46953851227454]
本稿では,ある絵画の視覚的体験における視聴者の眼球運動分析に焦点を当てた。
我々は、人間の視覚的注意を予測するための新しいアプローチを導入し、人間の認知機能に影響を及ぼす。
提案した新しいアーキテクチャは、画像を取り込んでスキャンパスを返す。
論文 参考訳(メタデータ) (2022-09-22T22:27:08Z) - Pretraining on Interactions for Learning Grounded Affordance
Representations [22.290431852705662]
我々はニューラルネットワークを訓練し、シミュレーションされた相互作用において物体の軌道を予測する。
我々のネットワークの潜在表現は、観測された価格と観測されていない価格の両方を区別していることが示される。
提案する手法は,従来の語彙表現の形式的意味概念と統合可能な言語学習の手法である。
論文 参考訳(メタデータ) (2022-07-05T19:19:53Z) - Peripheral Vision Transformer [52.55309200601883]
我々は生物学的にインスパイアされたアプローチを採用し、視覚認識のためのディープニューラルネットワークの周辺視覚をモデル化する。
本稿では,マルチヘッド自己アテンション層に周辺位置エンコーディングを組み込むことにより,トレーニングデータから視覚領域を様々な周辺領域に分割することをネットワークが学べるようにすることを提案する。
大規模画像Netデータセット上でPerViTと呼ばれる提案したネットワークを評価し,マシン知覚モデルの内部動作を体系的に検討した。
論文 参考訳(メタデータ) (2022-06-14T12:47:47Z) - Learnable Visual Words for Interpretable Image Recognition [70.85686267987744]
モデル予測動作を2つの新しいモジュールで解釈するLearable Visual Words (LVW)を提案する。
意味的な視覚的単語学習は、カテゴリ固有の制約を緩和し、異なるカテゴリ間で共有される一般的な視覚的単語を可能にする。
6つの視覚的ベンチマーク実験により,提案したLVWの精度とモデル解釈における優れた効果が示された。
論文 参考訳(メタデータ) (2022-05-22T03:24:45Z) - Understanding the Role of Individual Units in a Deep Neural Network [85.23117441162772]
本稿では,画像分類と画像生成ネットワーク内の隠れ単位を系統的に同定する分析フレームワークを提案する。
まず、シーン分類に基づいて訓練された畳み込みニューラルネットワーク(CNN)を分析し、多様なオブジェクト概念にマッチするユニットを発見する。
第2に、シーンを生成するために訓練されたGANモデルについて、同様の分析手法を用いて分析する。
論文 参考訳(メタデータ) (2020-09-10T17:59:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。