It Takes Two: Real-time Co-Speech Two-person's Interaction Generation via Reactive Auto-regressive Diffusion Model
- URL: http://arxiv.org/abs/2412.02419v1
- Date: Tue, 03 Dec 2024 12:31:44 GMT
- Title: It Takes Two: Real-time Co-Speech Two-person's Interaction Generation via Reactive Auto-regressive Diffusion Model
- Authors: Mingyi Shi, Dafei Qin, Leo Ho, Zhouyingcheng Liao, Yinghao Huang, Junichi Yamagishi, Taku Komura,
- Abstract summary: We introduce an audio-driven, auto-regressive system designed to synthesize dynamic movements for two characters during a conversation.
To the best of our knowledge, this is the first system capable of generating interactive full-body motions for two characters from speech in an online manner.
- Score: 34.94330722832987
- License:
- Abstract: Conversational scenarios are very common in real-world settings, yet existing co-speech motion synthesis approaches often fall short in these contexts, where one person's audio and gestures will influence the other's responses. Additionally, most existing methods rely on offline sequence-to-sequence frameworks, which are unsuitable for online applications. In this work, we introduce an audio-driven, auto-regressive system designed to synthesize dynamic movements for two characters during a conversation. At the core of our approach is a diffusion-based full-body motion synthesis model, which is conditioned on the past states of both characters, speech audio, and a task-oriented motion trajectory input, allowing for flexible spatial control. To enhance the model's ability to learn diverse interactions, we have enriched existing two-person conversational motion datasets with more dynamic and interactive motions. We evaluate our system through multiple experiments to show it outperforms across a variety of tasks, including single and two-person co-speech motion generation, as well as interactive motion generation. To the best of our knowledge, this is the first system capable of generating interactive full-body motions for two characters from speech in an online manner.
Related papers
- InterDyn: Controllable Interactive Dynamics with Video Diffusion Models [50.38647583839384]
We propose InterDyn, a framework that generates videos of interactive dynamics given an initial frame and a control signal encoding the motion of a driving object or actor.
Our key insight is that large video foundation models can act as both neurals and implicit physics simulators by learning interactive dynamics from large-scale video data.
arXiv Detail & Related papers (2024-12-16T13:57:02Z) - OmniFlatten: An End-to-end GPT Model for Seamless Voice Conversation [53.7173034249361]
End-to-end GPT-based model OmniFlatten capable of effectively modeling complex behaviors inherent natural conversations with low latency.
Our approach offers a simple modeling technique and a promising research direction for developing efficient and natural end-to-end full- spoken dialogue systems.
arXiv Detail & Related papers (2024-10-23T11:58:58Z) - Versatile Motion Language Models for Multi-Turn Interactive Agents [28.736843383405603]
We introduce Versatile Interactive Motion language model, which integrates both language and motion modalities.
We evaluate the versatility of our method across motion-related tasks, motion to text, text to motion, reaction generation, motion editing, and reasoning about motion sequences.
arXiv Detail & Related papers (2024-10-08T02:23:53Z) - InterAct: Capture and Modelling of Realistic, Expressive and Interactive Activities between Two Persons in Daily Scenarios [12.300105542672163]
We capture 241 motion sequences where two persons perform a realistic scenario over the whole sequence.
The audios, body motions, and facial expressions of both persons are all captured in our dataset.
We also demonstrate the first diffusion model based approach that directly estimates the interactive motions between two persons from their audios alone.
arXiv Detail & Related papers (2024-05-19T22:35:02Z) - Co-Speech Gesture Video Generation via Motion-Decoupled Diffusion Model [17.98911328064481]
Co-speech gestures can achieve superior visual effects in human-machine interaction.
We present a novel motion-decoupled framework to generate co-speech gesture videos.
Our proposed framework significantly outperforms existing approaches in both motion and video-related evaluations.
arXiv Detail & Related papers (2024-04-02T11:40:34Z) - ConvoFusion: Multi-Modal Conversational Diffusion for Co-Speech Gesture Synthesis [50.69464138626748]
We present ConvoFusion, a diffusion-based approach for multi-modal gesture synthesis.
Our method proposes two guidance objectives that allow the users to modulate the impact of different conditioning modalities.
Our method is versatile in that it can be trained either for generating monologue gestures or even the conversational gestures.
arXiv Detail & Related papers (2024-03-26T17:59:52Z) - ReMoS: 3D Motion-Conditioned Reaction Synthesis for Two-Person Interactions [66.87211993793807]
We present ReMoS, a denoising diffusion based model that synthesizes full body motion of a person in two person interaction scenario.
We demonstrate ReMoS across challenging two person scenarios such as pair dancing, Ninjutsu, kickboxing, and acrobatics.
We also contribute the ReMoCap dataset for two person interactions containing full body and finger motions.
arXiv Detail & Related papers (2023-11-28T18:59:52Z) - InterGen: Diffusion-based Multi-human Motion Generation under Complex Interactions [49.097973114627344]
We present InterGen, an effective diffusion-based approach that incorporates human-to-human interactions into the motion diffusion process.
We first contribute a multimodal dataset, named InterHuman. It consists of about 107M frames for diverse two-person interactions, with accurate skeletal motions and 23,337 natural language descriptions.
We propose a novel representation for motion input in our interaction diffusion model, which explicitly formulates the global relations between the two performers in the world frame.
arXiv Detail & Related papers (2023-04-12T08:12:29Z) - Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion [89.01668641930206]
We present a framework for modeling interactional communication in dyadic conversations.
We autoregressively output multiple possibilities of corresponding listener motion.
Our method organically captures the multimodal and non-deterministic nature of nonverbal dyadic interactions.
arXiv Detail & Related papers (2022-04-18T17:58:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.