Transformer-based Koopman Autoencoder for Linearizing Fisher's Equation
- URL: http://arxiv.org/abs/2412.02430v1
- Date: Tue, 03 Dec 2024 12:52:04 GMT
- Title: Transformer-based Koopman Autoencoder for Linearizing Fisher's Equation
- Authors: Kanav Singh Rana, Nitu Kumari,
- Abstract summary: A Transformer-based Koopman autoencoder is proposed for linear Fisher's reaction-diffusion equation.
The emphasis is on not just solving the equation but also transforming the system's dynamics into a more comprehensible form.
Extensive testing on multiple datasets was used to assess the efficacy of the proposed model.
- Score: 0.0
- License:
- Abstract: A Transformer-based Koopman autoencoder is proposed for linearizing Fisher's reaction-diffusion equation. The primary focus of this study is on using deep learning techniques to find complex spatiotemporal patterns in the reaction-diffusion system. The emphasis is on not just solving the equation but also transforming the system's dynamics into a more comprehensible, linear form. Global coordinate transformations are achieved through the autoencoder, which learns to capture the underlying dynamics by training on a dataset with 60,000 initial conditions. Extensive testing on multiple datasets was used to assess the efficacy of the proposed model, demonstrating its ability to accurately predict the system's evolution as well as to generalize. We provide a thorough comparison study, comparing our suggested design to a few other comparable methods using experiments on various PDEs, such as the Kuramoto-Sivashinsky equation and the Burger's equation. Results show improved accuracy, highlighting the capabilities of the Transformer-based Koopman autoencoder. The proposed architecture in is significantly ahead of other architectures, in terms of solving different types of PDEs using a single architecture. Our method relies entirely on the data, without requiring any knowledge of the underlying equations. This makes it applicable to even the datasets where the governing equations are not known.
Related papers
- KAN/MultKAN with Physics-Informed Spline fitting (KAN-PISF) for ordinary/partial differential equation discovery of nonlinear dynamic systems [0.0]
There is a dire need to interpret the machine learning models to develop a physical understanding of dynamic systems.
In this study, an equation discovery framework is proposed that includes i) sequentially regularized derivatives for denoising (SRDD) algorithm to denoise the measure data, ii) KAN to identify the equation structure and suggest relevant nonlinear functions.
arXiv Detail & Related papers (2024-11-18T18:14:51Z) - MaD-Scientist: AI-based Scientist solving Convection-Diffusion-Reaction Equations Using Massive PINN-Based Prior Data [22.262191225577244]
We explore whether a similar approach can be applied to scientific foundation models (SFMs)
We collect low-cost physics-informed neural network (PINN)-based approximated prior data in the form of solutions to partial differential equations (PDEs) constructed through an arbitrary linear combination of mathematical dictionaries.
We provide experimental evidence on the one-dimensional convection-diffusion-reaction equation, which demonstrate that pre-training remains robust even with approximated prior data.
arXiv Detail & Related papers (2024-10-09T00:52:00Z) - Self-Supervised Learning with Lie Symmetries for Partial Differential
Equations [25.584036829191902]
We learn general-purpose representations of PDEs by implementing joint embedding methods for self-supervised learning (SSL)
Our representation outperforms baseline approaches to invariant tasks, such as regressing the coefficients of a PDE, while also improving the time-stepping performance of neural solvers.
We hope that our proposed methodology will prove useful in the eventual development of general-purpose foundation models for PDEs.
arXiv Detail & Related papers (2023-07-11T16:52:22Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
Deep learning algorithms have emerged as a viable alternative for obtaining fast solutions for PDEs.
Models are usually trained on synthetic data generated by solvers, stored on disk and read back for training.
It proposes an open source online training framework for deep surrogate models.
arXiv Detail & Related papers (2023-06-28T12:02:27Z) - Experimental study of Neural ODE training with adaptive solver for
dynamical systems modeling [72.84259710412293]
Some ODE solvers called adaptive can adapt their evaluation strategy depending on the complexity of the problem at hand.
This paper describes a simple set of experiments to show why adaptive solvers cannot be seamlessly leveraged as a black-box for dynamical systems modelling.
arXiv Detail & Related papers (2022-11-13T17:48:04Z) - Identification of Dynamical Systems using Symbolic Regression [0.0]
We describe a method for the identification of models for dynamical systems from observational data.
The novelty is that we add a step of gradient-based optimization of the ODE parameters.
We find that gradient-based optimization of parameters improves predictive accuracy of the models.
arXiv Detail & Related papers (2021-07-06T11:41:10Z) - A Probabilistic State Space Model for Joint Inference from Differential
Equations and Data [23.449725313605835]
We show a new class of solvers for ordinary differential equations (ODEs) that phrase the solution process directly in terms of Bayesian filtering.
It then becomes possible to perform approximate Bayesian inference on the latent force as well as the ODE solution in a single, linear complexity pass of an extended Kalman filter.
We demonstrate the expressiveness and performance of the algorithm by training a non-parametric SIRD model on data from the COVID-19 outbreak.
arXiv Detail & Related papers (2021-03-18T10:36:09Z) - Autoencoding Variational Autoencoder [56.05008520271406]
We study the implications of this behaviour on the learned representations and also the consequences of fixing it by introducing a notion of self consistency.
We show that encoders trained with our self-consistency approach lead to representations that are robust (insensitive) to perturbations in the input introduced by adversarial attacks.
arXiv Detail & Related papers (2020-12-07T14:16:14Z) - Category-Learning with Context-Augmented Autoencoder [63.05016513788047]
Finding an interpretable non-redundant representation of real-world data is one of the key problems in Machine Learning.
We propose a novel method of using data augmentations when training autoencoders.
We train a Variational Autoencoder in such a way, that it makes transformation outcome predictable by auxiliary network.
arXiv Detail & Related papers (2020-10-10T14:04:44Z) - Predictive Coding Approximates Backprop along Arbitrary Computation
Graphs [68.8204255655161]
We develop a strategy to translate core machine learning architectures into their predictive coding equivalents.
Our models perform equivalently to backprop on challenging machine learning benchmarks.
Our method raises the potential that standard machine learning algorithms could in principle be directly implemented in neural circuitry.
arXiv Detail & Related papers (2020-06-07T15:35:47Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
We describe the algorithm for the mathematical equations discovery from the given observations data.
The algorithm combines genetic programming with the sparse regression.
It could be used for governing analytical equation discovery as well as for partial differential equations (PDE) discovery.
arXiv Detail & Related papers (2020-04-03T17:21:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.