MaD-Scientist: AI-based Scientist solving Convection-Diffusion-Reaction Equations Using Massive PINN-Based Prior Data
- URL: http://arxiv.org/abs/2410.06442v1
- Date: Wed, 9 Oct 2024 00:52:00 GMT
- Title: MaD-Scientist: AI-based Scientist solving Convection-Diffusion-Reaction Equations Using Massive PINN-Based Prior Data
- Authors: Mingu Kang, Dongseok Lee, Woojin Cho, Jaehyeon Park, Kookjin Lee, Anthony Gruber, Youngjoon Hong, Noseong Park,
- Abstract summary: We explore whether a similar approach can be applied to scientific foundation models (SFMs)
We collect low-cost physics-informed neural network (PINN)-based approximated prior data in the form of solutions to partial differential equations (PDEs) constructed through an arbitrary linear combination of mathematical dictionaries.
We provide experimental evidence on the one-dimensional convection-diffusion-reaction equation, which demonstrate that pre-training remains robust even with approximated prior data.
- Score: 22.262191225577244
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs), like ChatGPT, have shown that even trained with noisy prior data, they can generalize effectively to new tasks through in-context learning (ICL) and pre-training techniques. Motivated by this, we explore whether a similar approach can be applied to scientific foundation models (SFMs). Our methodology is structured as follows: (i) we collect low-cost physics-informed neural network (PINN)-based approximated prior data in the form of solutions to partial differential equations (PDEs) constructed through an arbitrary linear combination of mathematical dictionaries; (ii) we utilize Transformer architectures with self and cross-attention mechanisms to predict PDE solutions without knowledge of the governing equations in a zero-shot setting; (iii) we provide experimental evidence on the one-dimensional convection-diffusion-reaction equation, which demonstrate that pre-training remains robust even with approximated prior data, with only marginal impacts on test accuracy. Notably, this finding opens the path to pre-training SFMs with realistic, low-cost data instead of (or in conjunction with) numerical high-cost data. These results support the conjecture that SFMs can improve in a manner similar to LLMs, where fully cleaning the vast set of sentences crawled from the Internet is nearly impossible.
Related papers
- Graph Neural Networks and Differential Equations: A hybrid approach for data assimilation of fluid flows [0.0]
This study presents a novel hybrid approach that combines Graph Neural Networks (GNNs) with Reynolds-Averaged Navier Stokes (RANS) equations.
The results demonstrate significant improvements in the accuracy of the reconstructed mean flow compared to purely data-driven models.
arXiv Detail & Related papers (2024-11-14T14:31:52Z) - Physics Informed Machine Learning (PIML) methods for estimating the remaining useful lifetime (RUL) of aircraft engines [0.0]
This paper is aimed at using the newly developing field of physics informed machine learning (PIML) to develop models for predicting the remaining useful lifetime (RUL) aircraft engines.
We consider the well-known benchmark NASA Commercial Modular Aero-Propulsion System Simulation System (C-MAPSS) data as the main data for this paper.
C-MAPSS is a well-studied dataset with much existing work in the literature that address RUL prediction with classical and deep learning methods.
arXiv Detail & Related papers (2024-06-21T19:55:34Z) - Extracting Training Data from Unconditional Diffusion Models [76.85077961718875]
diffusion probabilistic models (DPMs) are being employed as mainstream models for generative artificial intelligence (AI)
We aim to establish a theoretical understanding of memorization in DPMs with 1) a memorization metric for theoretical analysis, 2) an analysis of conditional memorization with informative and random labels, and 3) two better evaluation metrics for measuring memorization.
Based on the theoretical analysis, we propose a novel data extraction method called textbfSurrogate condItional Data Extraction (SIDE) that leverages a trained on generated data as a surrogate condition to extract training data directly from unconditional diffusion models.
arXiv Detail & Related papers (2024-06-18T16:20:12Z) - Scaling up Probabilistic PDE Simulators with Structured Volumetric Information [23.654711580674885]
We propose a framework combining a discretization scheme based on the popular Finite Volume Method with complementary numerical linear algebra techniques.
Experiments, including atemporal tsunami simulation, demonstrate substantially improved scaling behavior of this approach over previous collocation-based techniques.
arXiv Detail & Related papers (2024-06-07T15:38:27Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Local approximate Gaussian process regression for data-driven
constitutive laws: Development and comparison with neural networks [0.0]
We show how to use local approximate process regression to predict stress outputs at particular strain space locations.
A modified Newton-Raphson approach is proposed to accommodate for the local nature of the laGPR approximation when solving the global structural problem in a FE setting.
arXiv Detail & Related papers (2021-05-07T14:49:28Z) - Particles to Partial Differential Equations Parsimoniously [0.0]
coarse-grained effective Partial Differential Equations can lead to considerable savings in computation-intensive tasks like prediction or control.
We propose a framework combining artificial neural networks with multiscale computation, in the form of equation-free numerics.
We illustrate our approach by extracting coarse-grained evolution equations from particle-based simulations with a priori unknown macro-scale variable.
arXiv Detail & Related papers (2020-11-09T15:51:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.