論文の概要: Multi-scale and Multi-path Cascaded Convolutional Network for Semantic Segmentation of Colorectal Polyps
- arxiv url: http://arxiv.org/abs/2412.02443v1
- Date: Tue, 03 Dec 2024 13:27:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:42:19.445188
- Title: Multi-scale and Multi-path Cascaded Convolutional Network for Semantic Segmentation of Colorectal Polyps
- Title(参考訳): 大腸ポリープのセマンティックセグメンテーションのためのマルチスケールおよびマルチパスカスケード畳み込みネットワーク
- Authors: Malik Abdul Manan, Feng Jinchao, Muhammad Yaqub, Shahzad Ahmed, Syed Muhammad Ali Imran, Imran Shabir Chuhan, Haroon Ahmed Khan,
- Abstract要約: 本研究は,Multi-Scale and Multi-Path Cascaded Convolution Network (MMCC-Net) という,大腸ポリープセグメンテーションのための新しいフレームワークを提案する。
MMCC-Netは、マルチスケールおよびマルチパスのカスケード畳み込み技術を統合し、デュアルアテンションモジュール、スキップ接続、フィーチャエンハンサーを通じてフィーチャアグリゲーションを強化する。
提案したMMCC-Netは6つの公開データセットでテストされ、ポリプセグメンテーションの効率を示すために8つのSOTAモデルと比較された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Colorectal polyps are structural abnormalities of the gastrointestinal tract that can potentially become cancerous in some cases. The study introduces a novel framework for colorectal polyp segmentation named the Multi-Scale and Multi-Path Cascaded Convolution Network (MMCC-Net), aimed at addressing the limitations of existing models, such as inadequate spatial dependence representation and the absence of multi-level feature integration during the decoding stage by integrating multi-scale and multi-path cascaded convolutional techniques and enhances feature aggregation through dual attention modules, skip connections, and a feature enhancer. MMCC-Net achieves superior performance in identifying polyp areas at the pixel level. The Proposed MMCC-Net was tested across six public datasets and compared against eight SOTA models to demonstrate its efficiency in polyp segmentation. The MMCC-Net's performance shows Dice scores with confidence intervals ranging between (77.08, 77.56) and (94.19, 94.71) and Mean Intersection over Union (MIoU) scores with confidence intervals ranging from (72.20, 73.00) to (89.69, 90.53) on the six databases. These results highlight the model's potential as a powerful tool for accurate and efficient polyp segmentation, contributing to early detection and prevention strategies in colorectal cancer.
- Abstract(参考訳): 大腸ポリープは消化管の構造異常であり、場合によっては癌になる可能性がある。
マルチスケール・マルチパス・カスケード・コンボリューション・ネットワーク (MMCC-Net) は,マルチスケール・マルチパス・カスケード・コンボリューション技術の統合と,デュアルアテンションモジュール,スキップ接続,特徴強調器による特徴集約の強化により,デコード段階における空間依存表現の不十分さや多レベル機能統合の欠如といった既存モデルの限界に対処することを目的とした,大腸ポリプセグメンテーションのための新しいフレームワークを提案する。
MMCC-Netは画素レベルでのポリプ領域の同定において優れた性能を発揮する。
Proposed MMCC-Netは6つの公開データセットでテストされ、ポリプセグメンテーションの効率を示すために8つのSOTAモデルと比較された。
MMCC-Netのパフォーマンスは、Diceスコアが(77.08, 77.56)から(94.19, 94.71)、Mean Intersection over Union (MIoU)スコアが6つのデータベース上で(72.20, 73.00)から(89.69, 90.53)までの信頼区間であることを示している。
これらの結果は, 大腸癌の早期発見・予防戦略に寄与し, 正確かつ効率的なポリープセグメンテーションのための強力なツールとしてのモデルの可能性を浮き彫りにした。
関連論文リスト
- MNet-SAt: A Multiscale Network with Spatial-enhanced Attention for Segmentation of Polyps in Colonoscopy [0.10995326465245926]
大腸内視鏡画像におけるポリプセグメンテーションのためのMNetSAt(Multiscale Network with spatial-enhanced Attention)を提案する。
このフレームワークには、エッジガイド機能強化(EGFE)、マルチスケール機能集約(MSFA)、空間拡張注意(SEAt)の4つの重要なモジュールが含まれている。
我々は,Kvasir-SEGデータセットとCVC-ClinicDBデータセット上でMNet-SAtを評価し,96.61%,98.60%のDice類似度係数をそれぞれ達成した。
論文 参考訳(メタデータ) (2024-12-27T05:17:29Z) - PSTNet: Enhanced Polyp Segmentation with Multi-scale Alignment and Frequency Domain Integration [17.1088588766663]
Polyp Network with Shunted Transformer (PSTNet) は、画像に存在するRGBと周波数領域の両方を統合する新しいアプローチである。
PSTNetは3つの主要なモジュールから構成される: 周波数特性アテンションモジュール(FCAM)は周波数キューを抽出し、ポリプの特徴を捉え、特徴補助アライメントモジュール(FSAM)は意味情報を調整し、ノイズを低減し、CPMは周波数キューを高レベルなセマンティクスと相乗化して効率的なポリプセグメンテーションを実現する。
論文 参考訳(メタデータ) (2024-09-13T02:52:25Z) - ECC-PolypDet: Enhanced CenterNet with Contrastive Learning for Automatic
Polyp Detection [88.4359020192429]
既存の手法では、計算コストのかかるコンテキストアグリゲーションが伴うか、ポリープの事前モデリングが欠如しているため、難解なケースでは性能が低下する。
本稿では,2段階のトレーニングとエンドツーエンド推論フレームワークである Enhanced CenterNet with Contrastive Learning (ECC-PolypDet) を提案する。
Box-assisted Contrastive Learning (BCL) は, クラス内差を最小限に抑え, 前庭ポリープと背景のクラス間差を最大化するため, 隠れポリープを捕捉する。
微調整段階におけるIoU誘導サンプル再重み付けの導入
論文 参考訳(メタデータ) (2024-01-10T07:03:41Z) - M3FPolypSegNet: Segmentation Network with Multi-frequency Feature Fusion
for Polyp Localization in Colonoscopy Images [1.389360509566256]
M3FPolypSegNet (M3FPolypSegNet) は、入力画像を低周波数成分/高周波数成分に分解する。
我々は3つの独立したマルチ周波数エンコーダを用いて、複数の入力画像を高次元の特徴空間にマッピングした。
我々は,4つのデコーダブロックで3つのマルチタスク学習(領域,エッジ,距離)を設計し,その領域の構造的特徴を学習した。
論文 参考訳(メタデータ) (2023-10-09T09:01:53Z) - Edge-aware Feature Aggregation Network for Polyp Segmentation [38.11584888416297]
本研究では,ポリプセグメンテーションのためのエッジ対応特徴集約ネットワーク(EFA-Net)を提案する。
EFA-Netは、ポリプセグメンテーションの性能を高めるために、クロスレベルとマルチスケールの機能を完全に活用することができる。
広く採用されている5つの大腸内視鏡データセットの実験結果から,我々のEFA-Netは,一般化と有効性の観点から,最先端のポリプセグメンテーション法より優れていることが示された。
論文 参考訳(メタデータ) (2023-09-19T11:09:38Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
ポリープセグメンテーションのための障害対応動的ネットワーク(LDNet)を提案する。
従来のU字型エンコーダ・デコーダ構造であり、動的カーネル生成と更新スキームが組み込まれている。
この単純だが効果的なスキームは、我々のモデルに強力なセグメンテーション性能と一般化能力を与える。
論文 参考訳(メタデータ) (2023-01-12T09:53:57Z) - Adaptive Context Selection for Polyp Segmentation [99.9959901908053]
本稿では,ローカルコンテキストアテンション(LCA)モジュール,グローバルコンテキストモジュール(GCM)モジュール,適応選択モジュール(ASM)モジュールで構成される適応コンテキスト選択に基づくエンコーダデコーダフレームワークを提案する。
LCAモジュールは、エンコーダ層からデコーダ層へローカルなコンテキスト機能を提供する。
GCMは、グローバルなコンテキストの特徴をさらに探求し、デコーダ層に送信することを目的としている。ASMは、チャンネルワイドアテンションを通じて、コンテキスト特徴の適応的選択と集約に使用される。
論文 参考訳(メタデータ) (2023-01-12T04:06:44Z) - BoxPolyp:Boost Generalized Polyp Segmentation Using Extra Coarse
Bounding Box Annotations [79.17754846553866]
我々は、正確なマスクと余分な粗いボックスアノテーションをフル活用するための強化されたBoxPolypモデルを提案する。
実際には、従来のポリプセグメンテーションモデルの過度に適合する問題を緩和するためにボックスアノテーションが適用される。
提案手法は従来の最先端手法よりも大きなマージンで優れていた。
論文 参考訳(メタデータ) (2022-12-07T07:45:50Z) - BDG-Net: Boundary Distribution Guided Network for Accurate Polyp
Segmentation [9.175022232984709]
ポリープ切除術は腺腫から腺癌への進行を効果的に阻害することができる。
ポリープの大きさやポリープとその周囲の粘膜の境界が不明瞭であるため、ポリープを正確に分割することは困難である。
正確なポリープ分割のための境界分布誘導ネットワーク(BDG-Net)を設計する。
論文 参考訳(メタデータ) (2022-01-03T17:15:18Z) - Automatic Polyp Segmentation via Multi-scale Subtraction Network [100.94922587360871]
臨床的には、正確なポリープセグメンテーションは大腸癌の早期発見に重要な情報を提供する。
既存のほとんどの手法はU字型構造に基づいており、デコーダで段階的に異なるレベルの特徴を融合させるために要素ワイド付加または結合を用いる。
大腸内視鏡画像からポリプを抽出するマルチスケールサブトラクションネットワーク(MSNet)を提案する。
論文 参考訳(メタデータ) (2021-08-11T07:54:07Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
大腸内視鏡画像の高精度なポリープ分割のための並列リバースアテンションネットワーク(PraNet)を提案する。
並列部分復号器(PPD)を用いて,まず高層層に特徴を集約する。
さらに,エリアとバウンダリの関連性を確立するために,リバースアテンション(RA)モジュールを用いて境界キューをマイニングする。
論文 参考訳(メタデータ) (2020-06-13T08:13:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。