論文の概要: BYE: Build Your Encoder with One Sequence of Exploration Data for Long-Term Dynamic Scene Understanding
- arxiv url: http://arxiv.org/abs/2412.02449v1
- Date: Tue, 03 Dec 2024 13:34:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:51:08.308381
- Title: BYE: Build Your Encoder with One Sequence of Exploration Data for Long-Term Dynamic Scene Understanding
- Title(参考訳): BYE: 長期動的シーン理解のための探索データの1シーケンスでエンコーダを構築する
- Authors: Chenguang Huang, Shengchao Yan, Wolfram Burgard,
- Abstract要約: BYEはクラスに依存しない、シーン毎のクラウドエンコーダで、事前に定義されたカテゴリ、シェイププレファレンス、あるいは広範囲のアソシエーションデータセットの必要性を取り除く。
本稿では,視覚言語モデルとBYEのシーン固有の専門知識を組み合わせたアンサンブル手法を提案する。
- 参考スコア(独自算出の注目度): 18.991160292960277
- License:
- Abstract: Dynamic scene understanding remains a persistent challenge in robotic applications. Early dynamic mapping methods focused on mitigating the negative influence of short-term dynamic objects on camera motion estimation by masking or tracking specific categories, which often fall short in adapting to long-term scene changes. Recent efforts address object association in long-term dynamic environments using neural networks trained on synthetic datasets, but they still rely on predefined object shapes and categories. Other methods incorporate visual, geometric, or semantic heuristics for the association but often lack robustness. In this work, we introduce BYE, a class-agnostic, per-scene point cloud encoder that removes the need for predefined categories, shape priors, or extensive association datasets. Trained on only a single sequence of exploration data, BYE can efficiently perform object association in dynamically changing scenes. We further propose an ensembling scheme combining the semantic strengths of Vision Language Models (VLMs) with the scene-specific expertise of BYE, achieving a 7% improvement and a 95% success rate in object association tasks. Code and dataset are available at https://byencoder.github.io.
- Abstract(参考訳): 動的シーン理解は、ロボットアプリケーションにおける永続的な課題である。
初期の動的マッピング手法は、短期的動的物体の負の影響をマスキングや特定のカテゴリーの追跡によって軽減し、長期的なシーンの変化に適応できないことが多かった。
近年の取り組みは、合成データセットに基づいてトレーニングされたニューラルネットワークを用いた長期的動的環境におけるオブジェクト関連に対処しているが、それらはまだ事前に定義されたオブジェクトの形状やカテゴリに依存している。
他の方法は、視覚的、幾何学的、または意味的ヒューリスティックスを含むが、しばしば堅牢性に欠ける。
本研究では,クラスに依存しない,各シーン毎のクラウドエンコーダであるBYEを紹介する。
単一の探索データのみに基づいてトレーニングされたBYEは、動的に変化するシーンにおいて、オブジェクトアソシエーションを効率的に行うことができる。
さらに,視覚言語モデル(VLM)とBYEのシーン固有の専門知識を組み合わせたアンサンブル方式を提案し,7%の改善と95%の成功率を実現した。
コードとデータセットはhttps://byencoder.github.io.comで入手できる。
関連論文リスト
- A Modern Take on Visual Relationship Reasoning for Grasp Planning [10.543168383800532]
本稿では,視覚的リレーショナル推論による把握計画を提案する。
D3GDは、97の異なるカテゴリから最大35のオブジェクトを持つビンピックシーンを含む、新しいテストベッドである。
また、新しいエンドツーエンドのトランスフォーマーベースの依存性グラフ生成モデルであるD3Gを提案する。
論文 参考訳(メタデータ) (2024-09-03T16:30:48Z) - Leveraging Next-Active Objects for Context-Aware Anticipation in
Egocentric Videos [31.620555223890626]
短期オブジェクト間相互作用予測(STA)の問題点について検討する。
本稿では,マルチモーダル・エンド・ツー・エンド・トランスフォーマー・ネットワークであるNAOGATを提案する。
我々のモデルは2つの異なるデータセット上で既存の手法より優れている。
論文 参考訳(メタデータ) (2023-08-16T12:07:02Z) - Contrastive Lift: 3D Object Instance Segmentation by Slow-Fast
Contrastive Fusion [110.84357383258818]
本稿では,2次元セグメントを3次元に上げ,ニューラルネットワーク表現を用いて融合させる新しい手法を提案する。
このアプローチの中核は、高速なクラスタリング目的関数であり、多数のオブジェクトを持つシーンにスケーラブルで適しています。
我々のアプローチは、ScanNet、Hypersim、Replicaのデータセットからの挑戦的なシーンにおいて、最先端の状況よりも優れています。
論文 参考訳(メタデータ) (2023-06-07T17:57:45Z) - Modeling Dynamic Environments with Scene Graph Memory [46.587536843634055]
本稿では,部分的に観測可能な動的グラフ上でのリンク予測という,新しいタイプのリンク予測問題を提案する。
私たちのグラフは、部屋とオブジェクトがノードであり、それらの関係がエッジにエンコードされるシーンの表現です。
エージェントの蓄積した観測結果をキャプチャする新しい状態表現 -- SGM (Scene Graph Memory) を提案する。
家庭で一般的に見られるセマンティックなパターンに従って,多様な動的グラフを生成する新しいベンチマークであるDynamic House Simulatorで,本手法の評価を行った。
論文 参考訳(メタデータ) (2023-05-27T17:39:38Z) - Learning Dynamic View Synthesis With Few RGBD Cameras [60.36357774688289]
本稿では,RGBDカメラを用いて動的屋内シーンのフリー視点映像を合成することを提案する。
我々は、RGBDフレームから点雲を生成し、それをニューラル機能を介して、自由視点ビデオにレンダリングする。
そこで本研究では,未完成の深度を適応的に塗布して新規なビューを描画する,シンプルなRegional Depth-Inpaintingモジュールを提案する。
論文 参考訳(メタデータ) (2022-04-22T03:17:35Z) - SOS! Self-supervised Learning Over Sets Of Handled Objects In Egocentric
Action Recognition [35.4163266882568]
本稿では,SOS(Self-Supervised Learning Over Sets)を導入し,OIC(ジェネリック・オブジェクト・イン・コンタクト)表現モデルを事前学習する。
OICは複数の最先端ビデオ分類モデルの性能を大幅に向上させる。
論文 参考訳(メタデータ) (2022-04-10T23:27:19Z) - Relation-aware Hierarchical Attention Framework for Video Question
Answering [6.312182279855817]
ビデオ中のオブジェクトの静的な関係と動的関係を学習するために,RHA(Relation-aware Hierarchical Attention)フレームワークを提案する。
特に、ビデオや質問は、まず事前訓練されたモデルによって埋め込まれ、視覚とテキストの特徴を得る。
我々は,時間的,空間的,意味的関係を考察し,階層的注意機構によりマルチモーダルな特徴を融合して回答を予測する。
論文 参考訳(メタデータ) (2021-05-13T09:35:42Z) - REGRAD: A Large-Scale Relational Grasp Dataset for Safe and
Object-Specific Robotic Grasping in Clutter [52.117388513480435]
本稿では,オブジェクト間の関係のモデル化を継続するregradという新しいデータセットを提案する。
データセットは2D画像と3Dポイントクラウドの両方で収集されます。
ユーザは、好きなだけ多くのデータを生成するために、自由に独自のオブジェクトモデルをインポートできる。
論文 参考訳(メタデータ) (2021-04-29T05:31:21Z) - ConsNet: Learning Consistency Graph for Zero-Shot Human-Object
Interaction Detection [101.56529337489417]
画像中のHuman, Action, Object>の形のHOIインスタンスを検出・認識することを目的としたHuman-Object Interaction (HOI) Detectionの問題点を考察する。
我々は、オブジェクト、アクション、インタラクション間の多レベルコンパレンシーは、稀な、あるいは以前には見られなかったHOIのセマンティック表現を生成するための強力な手がかりであると主張している。
提案モデルでは,人-対象のペアの視覚的特徴とHOIラベルの単語埋め込みを入力とし,それらを視覚-意味的関節埋め込み空間にマッピングし,類似度を計測して検出結果を得る。
論文 参考訳(メタデータ) (2020-08-14T09:11:18Z) - Learning Long-term Visual Dynamics with Region Proposal Interaction
Networks [75.06423516419862]
オブジェクト間およびオブジェクト環境間の相互作用を長距離にわたってキャプチャするオブジェクト表現を構築します。
単純だが効果的なオブジェクト表現のおかげで、我々の手法は先行手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2020-08-05T17:48:00Z) - RELATE: Physically Plausible Multi-Object Scene Synthesis Using
Structured Latent Spaces [77.07767833443256]
RELATEは、複数の対話オブジェクトの物理的に可視なシーンとビデオを生成することを学習するモデルである。
オブジェクト中心生成モデリングにおける最先端の手法とは対照的に、RELATEは自然に動的なシーンに拡張し、高い視覚的忠実度のビデオを生成する。
論文 参考訳(メタデータ) (2020-07-02T17:27:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。