Semantic Tokens in Retrieval Augmented Generation
- URL: http://arxiv.org/abs/2412.02563v1
- Date: Tue, 03 Dec 2024 16:52:06 GMT
- Title: Semantic Tokens in Retrieval Augmented Generation
- Authors: Joel Suro,
- Abstract summary: I propose a novel Comparative RAG system that introduces an evaluator module to bridge the gap between probabilistic RAG systems and deterministically verifiable responses.
This framework paves the way for more reliable and scalable question-answering applications in domains requiring high precision and verifiability.
- Score: 0.0
- License:
- Abstract: Retrieval-Augmented Generation (RAG) architectures have recently garnered significant attention for their ability to improve truth grounding and coherence in natural language processing tasks. However, the reliability of RAG systems in producing accurate answers diminishes as the volume of data they access increases. Even with smaller datasets, these systems occasionally fail to address simple queries. This issue arises from their dependence on state-of-the-art large language models (LLMs), which can introduce uncertainty into the system's outputs. In this work, I propose a novel Comparative RAG system that introduces an evaluator module to bridge the gap between probabilistic RAG systems and deterministically verifiable responses. The evaluator compares external recommendations with the retrieved document chunks, adding a decision-making layer that enhances the system's reliability. This approach ensures that the chunks retrieved are both semantically relevant and logically consistent with deterministic insights, thereby improving the accuracy and overall efficiency of RAG systems. This framework paves the way for more reliable and scalable question-answering applications in domains requiring high precision and verifiability.
Related papers
- Transparent NLP: Using RAG and LLM Alignment for Privacy Q&A [15.86510147965235]
General Data Protection Regulation requires precise processing information to be clear and accessible.
This paper examines state-of-the-art Retrieval Generation (RAG) systems enhanced with alignment techniques to fulfill obligations.
arXiv Detail & Related papers (2025-02-10T16:42:00Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAG is a framework designed to evaluate whether RAG systems can handle unanswerable queries effectively.
We define a taxonomy with six unanswerable categories, and UAEval4RAG automatically synthesizes diverse and challenging queries.
arXiv Detail & Related papers (2024-12-16T19:11:55Z) - ChunkRAG: Novel LLM-Chunk Filtering Method for RAG Systems [2.8692611791027893]
Retrieval-Augmented Generation (RAG) systems generate inaccurate responses due to the retrieval of irrelevant or loosely related information.
We propose ChunkRAG, a framework that enhances RAG systems by evaluating and filtering retrieved information at the chunk level.
arXiv Detail & Related papers (2024-10-25T14:07:53Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - VERA: Validation and Enhancement for Retrieval Augmented systems [0.0]
We propose textbfVERA (textbfValidation and textbfEnhancement for textbfRetrieval textbfAugmented systems), a system designed to evaluate and enhance the retrieved context before response generation.
VERA employs an evaluator-cum-enhancer LLM that first checks if external retrieval is necessary, evaluates the relevance and redundancy of the retrieved context, and refines it to eliminate non-essential information.
arXiv Detail & Related papers (2024-09-18T16:10:47Z) - Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG) has quickly grown into a pivotal paradigm in the development of Large Language Models (LLMs)
We propose a unified framework that assesses the trustworthiness of RAG systems across six key dimensions: factuality, robustness, fairness, transparency, accountability, and privacy.
arXiv Detail & Related papers (2024-09-16T09:06:44Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios.
With a focus on factual accuracy, we propose three novel metrics Completeness, Hallucination, and Irrelevance.
Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples.
arXiv Detail & Related papers (2024-08-02T13:35:11Z) - Introducing a new hyper-parameter for RAG: Context Window Utilization [0.0]
RAG systems enhance generative models by incorporating relevant information retrieved from external knowledge bases.
The size of the text chunks retrieved and processed is a critical factor influencing RAG performance.
This study aims to identify the optimal chunk size that maximizes answer generation quality.
arXiv Detail & Related papers (2024-07-29T08:38:14Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented generation (RAG) can significantly improve the performance of language models (LMs)
RAGGED is a framework for analyzing RAG configurations across various document-based question answering tasks.
arXiv Detail & Related papers (2024-03-14T02:26:31Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG) is a technique that enhances the capabilities of large language models (LLMs) by incorporating external knowledge sources.
This paper constructs a large-scale and more comprehensive benchmark, and evaluates all the components of RAG systems in various RAG application scenarios.
arXiv Detail & Related papers (2024-01-30T14:25:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.