Transparent NLP: Using RAG and LLM Alignment for Privacy Q&A
- URL: http://arxiv.org/abs/2502.06652v1
- Date: Mon, 10 Feb 2025 16:42:00 GMT
- Title: Transparent NLP: Using RAG and LLM Alignment for Privacy Q&A
- Authors: Anna Leschanowsky, Zahra Kolagar, Erion Çano, Ivan Habernal, Dara Hallinan, Emanuël A. P. Habets, Birgit Popp,
- Abstract summary: General Data Protection Regulation requires precise processing information to be clear and accessible.
This paper examines state-of-the-art Retrieval Generation (RAG) systems enhanced with alignment techniques to fulfill obligations.
- Score: 15.86510147965235
- License:
- Abstract: The transparency principle of the General Data Protection Regulation (GDPR) requires data processing information to be clear, precise, and accessible. While language models show promise in this context, their probabilistic nature complicates truthfulness and comprehensibility. This paper examines state-of-the-art Retrieval Augmented Generation (RAG) systems enhanced with alignment techniques to fulfill GDPR obligations. We evaluate RAG systems incorporating an alignment module like Rewindable Auto-regressive Inference (RAIN) and our proposed multidimensional extension, MultiRAIN, using a Privacy Q&A dataset. Responses are optimized for preciseness and comprehensibility and are assessed through 21 metrics, including deterministic and large language model-based evaluations. Our results show that RAG systems with an alignment module outperform baseline RAG systems on most metrics, though none fully match human answers. Principal component analysis of the results reveals complex interactions between metrics, highlighting the need to refine metrics. This study provides a foundation for integrating advanced natural language processing systems into legal compliance frameworks.
Related papers
- Improving Retrieval-Augmented Generation through Multi-Agent Reinforcement Learning [51.54046200512198]
Retrieval-augmented generation (RAG) is extensively utilized to incorporate external, current knowledge into large language models.
A standard RAG pipeline may comprise several components, such as query rewriting, document retrieval, document filtering, and answer generation.
To overcome these challenges, we propose treating the RAG pipeline as a multi-agent cooperative task, with each component regarded as an RL agent.
arXiv Detail & Related papers (2025-01-25T14:24:50Z) - SKETCH: Structured Knowledge Enhanced Text Comprehension for Holistic Retrieval [0.7421845364041001]
This paper introduces SKETCH, a novel methodology that enhances the RAG retrieval process by integrating semantic text retrieval with knowledge graphs.
SKETCH consistently outperforms baseline approaches on key RAGAS metrics such as answer_relevancy, faithfulness, context_precision and context_recall.
Results highlight SKETCH's capability in delivering more accurate and contextually relevant responses, setting new benchmarks for future retrieval systems.
arXiv Detail & Related papers (2024-12-19T22:51:56Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAG is a framework designed to evaluate whether RAG systems can handle unanswerable queries effectively.
We define a taxonomy with six unanswerable categories, and UAEval4RAG automatically synthesizes diverse and challenging queries.
arXiv Detail & Related papers (2024-12-16T19:11:55Z) - Semantic Tokens in Retrieval Augmented Generation [0.0]
I propose a novel Comparative RAG system that introduces an evaluator module to bridge the gap between probabilistic RAG systems and deterministically verifiable responses.
This framework paves the way for more reliable and scalable question-answering applications in domains requiring high precision and verifiability.
arXiv Detail & Related papers (2024-12-03T16:52:06Z) - DLaVA: Document Language and Vision Assistant for Answer Localization with Enhanced Interpretability and Trustworthiness [34.170341753045776]
We introduce DLaVA, a novel method that enhances MLLMs with answer localization capabilities for Document VQA.
We present both OCR-dependent and OCR-free architectures, with the OCR-free approach eliminating the need for separate text recognition components.
Our contributions include enhancing interpretability and reliability by grounding responses in spatially annotated visual content.
arXiv Detail & Related papers (2024-11-29T06:17:11Z) - SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) is a paradigm that integrates external contextual information with large language models (LLMs) to enhance factual accuracy and relevance.
We introduce SFR-RAG, a small LLM that is instruction-textual with an emphasis on context-grounded generation and hallucination.
We also present ConBench, a new evaluation framework compiling multiple popular and diverse RAG benchmarks.
arXiv Detail & Related papers (2024-09-16T01:08:18Z) - VERA: Validation and Evaluation of Retrieval-Augmented Systems [5.709401805125129]
VERA is a framework designed to enhance the transparency and reliability of outputs from large language models (LLMs)
We show how VERA can strengthen decision-making processes and trust in AI applications.
arXiv Detail & Related papers (2024-08-16T21:59:59Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios.
With a focus on factual accuracy, we propose three novel metrics Completeness, Hallucination, and Irrelevance.
Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples.
arXiv Detail & Related papers (2024-08-02T13:35:11Z) - Blended RAG: Improving RAG (Retriever-Augmented Generation) Accuracy with Semantic Search and Hybrid Query-Based Retrievers [0.0]
Retrieval-Augmented Generation (RAG) is a prevalent approach to infuse a private knowledge base of documents with Large Language Models (LLM) to build Generative Q&A (Question-Answering) systems.
We propose the 'Blended RAG' method of leveraging semantic search techniques, such as Vector indexes and Sparse indexes, blended with hybrid query strategies.
Our study achieves better retrieval results and sets new benchmarks for IR (Information Retrieval) datasets like NQ and TREC-COVID datasets.
arXiv Detail & Related papers (2024-03-22T17:13:46Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented generation (RAG) can significantly improve the performance of language models (LMs)
RAGGED is a framework for analyzing RAG configurations across various document-based question answering tasks.
arXiv Detail & Related papers (2024-03-14T02:26:31Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG) is a technique that enhances the capabilities of large language models (LLMs) by incorporating external knowledge sources.
This paper constructs a large-scale and more comprehensive benchmark, and evaluates all the components of RAG systems in various RAG application scenarios.
arXiv Detail & Related papers (2024-01-30T14:25:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.