Generating Critical Scenarios for Testing Automated Driving Systems
- URL: http://arxiv.org/abs/2412.02574v1
- Date: Tue, 03 Dec 2024 16:59:30 GMT
- Title: Generating Critical Scenarios for Testing Automated Driving Systems
- Authors: Trung-Hieu Nguyen, Truong-Giang Vuong, Hong-Nam Duong, Son Nguyen, Hieu Dinh Vo, Toshiaki Aoki, Thu-Trang Nguyen,
- Abstract summary: AVASTRA is a Reinforcement Learning-based approach to generate realistic critical scenarios for testing Autonomous Driving System.
Results show AVASTRA's ability to outperform the state-of-the-art approach by generating 30% to 115% more collision scenarios.
- Score: 5.975915967339764
- License:
- Abstract: Autonomous vehicles (AVs) have demonstrated significant potential in revolutionizing transportation, yet ensuring their safety and reliability remains a critical challenge, especially when exposed to dynamic and unpredictable environments. Real-world testing of an Autonomous Driving System (ADS) is both expensive and risky, making simulation-based testing a preferred approach. In this paper, we propose AVASTRA, a Reinforcement Learning (RL)-based approach to generate realistic critical scenarios for testing ADSs in simulation environments. To capture the complexity of driving scenarios, AVASTRA comprehensively represents the environment by both the internal states of an ADS under-test (e.g., the status of the ADS's core components, speed, or acceleration) and the external states of the surrounding factors in the simulation environment (e.g., weather, traffic flow, or road condition). AVASTRA trains the RL agent to effectively configure the simulation environment that places the AV in dangerous situations and potentially leads it to collisions. We introduce a diverse set of actions that allows the RL agent to systematically configure both environmental conditions and traffic participants. Additionally, based on established safety requirements, we enforce heuristic constraints to ensure the realism and relevance of the generated test scenarios. AVASTRA is evaluated on two popular simulation maps with four different road configurations. Our results show AVASTRA's ability to outperform the state-of-the-art approach by generating 30% to 115% more collision scenarios. Compared to the baseline based on Random Search, AVASTRA achieves up to 275% better performance. These results highlight the effectiveness of AVASTRA in enhancing the safety testing of AVs through realistic comprehensive critical scenario generation.
Related papers
- Black-Box Adversarial Attack on Vision Language Models for Autonomous Driving [65.61999354218628]
We take the first step toward designing black-box adversarial attacks specifically targeting vision-language models (VLMs) in autonomous driving systems.
We propose Cascading Adversarial Disruption (CAD), which targets low-level reasoning breakdown by generating and injecting semantics.
We present Risky Scene Induction, which addresses dynamic adaptation by leveraging a surrogate VLM to understand and construct high-level risky scenarios.
arXiv Detail & Related papers (2025-01-23T11:10:02Z) - SimADFuzz: Simulation-Feedback Fuzz Testing for Autonomous Driving Systems [5.738863204900633]
SimADFuzz is a novel framework designed to generate high-quality scenarios that reveal violations in autonomous driving systems.
SimADFuzz employs violation prediction models, which evaluate the likelihood of ADS violations, to optimize scenario selection.
Comprehensive experiments demonstrate that SimADFuzz outperforms state-of-the-art fuzzers by identifying 32 more unique violations.
arXiv Detail & Related papers (2024-12-18T12:49:57Z) - CRASH: Challenging Reinforcement-Learning Based Adversarial Scenarios For Safety Hardening [16.305837225117607]
This paper introduces CRASH - Challenging Reinforcement-learning based Adversarial scenarios for Safety Hardening.
First CRASH can control adversarial Non Player Character (NPC) agents in an AV simulator to automatically induce collisions with the Ego vehicle.
We also propose a novel approach, that we term safety hardening, which iteratively refines the motion planner by simulating improvement scenarios against adversarial agents.
arXiv Detail & Related papers (2024-11-26T00:00:27Z) - Generating Out-Of-Distribution Scenarios Using Language Models [58.47597351184034]
Large Language Models (LLMs) have shown promise in autonomous driving.
This paper introduces a framework for generating diverse Out-Of-Distribution (OOD) driving scenarios.
We evaluate our framework through extensive simulations and introduce a new "OOD-ness" metric.
arXiv Detail & Related papers (2024-11-25T16:38:17Z) - PAFOT: A Position-Based Approach for Finding Optimal Tests of Autonomous Vehicles [4.243926243206826]
This paper proposes PAFOT, a position-based approach testing framework.
PAFOT generates adversarial driving scenarios to expose safety violations of Automated Driving Systems.
Experiments show PAFOT can effectively generate safety-critical scenarios to crash ADSs and is able to find collisions in a short simulation time.
arXiv Detail & Related papers (2024-05-06T10:04:40Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - ReMAV: Reward Modeling of Autonomous Vehicles for Finding Likely Failure
Events [1.84926694477846]
We propose a black-box testing framework that uses offline trajectories first to analyze the existing behavior of autonomous vehicles.
Our experiment shows an increase in 35, 23, 48, and 50% in the occurrences of vehicle collision, road object collision, pedestrian collision, and offroad steering events.
arXiv Detail & Related papers (2023-08-28T13:09:00Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
This paper presents a data-driven framework for assessing the risk of different AVs' behaviors.
We propose the notion of counterfactual safety margin, which represents the minimum deviation from nominal behavior that could cause a collision.
arXiv Detail & Related papers (2023-08-02T09:48:08Z) - Realistic Safety-critical Scenarios Search for Autonomous Driving System
via Behavior Tree [8.286351881735191]
We propose the Matrix-Fuzzer, a behavior tree-based testing framework, to automatically generate realistic safety-critical test scenarios.
Our approach is able to find the most types of safety-critical scenarios, but only generating around 30% of the total scenarios compared with the baseline algorithm.
arXiv Detail & Related papers (2023-05-11T06:53:03Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - Cautious Adaptation For Reinforcement Learning in Safety-Critical
Settings [129.80279257258098]
Reinforcement learning (RL) in real-world safety-critical target settings like urban driving is hazardous.
We propose a "safety-critical adaptation" task setting: an agent first trains in non-safety-critical "source" environments.
We propose a solution approach, CARL, that builds on the intuition that prior experience in diverse environments equips an agent to estimate risk.
arXiv Detail & Related papers (2020-08-15T01:40:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.