AV-Odyssey Bench: Can Your Multimodal LLMs Really Understand Audio-Visual Information?
- URL: http://arxiv.org/abs/2412.02611v1
- Date: Tue, 03 Dec 2024 17:41:23 GMT
- Title: AV-Odyssey Bench: Can Your Multimodal LLMs Really Understand Audio-Visual Information?
- Authors: Kaixiong Gong, Kaituo Feng, Bohao Li, Yibing Wang, Mofan Cheng, Shijia Yang, Jiaming Han, Benyou Wang, Yutong Bai, Zhuoran Yang, Xiangyu Yue,
- Abstract summary: multimodal large language models (MLLMs) have expanded their capabilities to include vision and audio modalities.
Our proposed DeafTest reveals that MLLMs often struggle with simple tasks humans find trivial.
We introduce AV-Odyssey Bench, a comprehensive audio-visual benchmark designed to assess whether those MLLMs can truly understand the audio-visual information.
- Score: 65.49972312524724
- License:
- Abstract: Recently, multimodal large language models (MLLMs), such as GPT-4o, Gemini 1.5 Pro, and Reka Core, have expanded their capabilities to include vision and audio modalities. While these models demonstrate impressive performance across a wide range of audio-visual applications, our proposed DeafTest reveals that MLLMs often struggle with simple tasks humans find trivial: 1) determining which of two sounds is louder, and 2) determining which of two sounds has a higher pitch. Motivated by these observations, we introduce AV-Odyssey Bench, a comprehensive audio-visual benchmark designed to assess whether those MLLMs can truly understand the audio-visual information. This benchmark encompasses 4,555 carefully crafted problems, each incorporating text, visual, and audio components. To successfully infer answers, models must effectively leverage clues from both visual and audio inputs. To ensure precise and objective evaluation of MLLM responses, we have structured the questions as multiple-choice, eliminating the need for human evaluation or LLM-assisted assessment. We benchmark a series of closed-source and open-source models and summarize the observations. By revealing the limitations of current models, we aim to provide useful insight for future dataset collection and model development.
Related papers
- Beyond Single-Audio: Advancing Multi-Audio Processing in Audio Large Language Models [56.776580717999806]
Real-world applications often involve processing multiple audio streams simultaneously.
We propose the first multi-audio evaluation benchmark that consists of 20 datasets from 11 multi-audio tasks.
We propose a novel multi-audio-LLM (MALLM) to capture audio context among multiple similar audios.
arXiv Detail & Related papers (2024-09-27T12:06:53Z) - Audio-visual training for improved grounding in video-text LLMs [1.9320359360360702]
We propose a model architecture that handles audio-visual inputs explicitly.
We train our model with both audio and visual data from a video instruction-tuning dataset.
For better evaluation of audio-visual models, we also release a human-annotated benchmark dataset.
arXiv Detail & Related papers (2024-07-21T03:59:14Z) - Video-MME: The First-Ever Comprehensive Evaluation Benchmark of Multi-modal LLMs in Video Analysis [118.08008540513596]
Video-MME is the first-ever full-spectrum, Multi-Modal Evaluation benchmark of MLLMs in Video analysis.
We extensively evaluate various state-of-the-art MLLMs, including GPT-4 series and Gemini 1.5 Pro, as well as open-source image models.
Our experiments reveal that Gemini 1.5 Pro is the best-performing commercial model, significantly outperforming the open-source models.
arXiv Detail & Related papers (2024-05-31T17:59:47Z) - AIR-Bench: Benchmarking Large Audio-Language Models via Generative Comprehension [95.8442896569132]
We introduce AIR-Bench, the first benchmark to evaluate the ability of Large Audio-Language Models (LALMs) to understand various types of audio signals and interact with humans in the textual format.
Results demonstrate a high level of consistency between GPT-4-based evaluation and human evaluation.
arXiv Detail & Related papers (2024-02-12T15:41:22Z) - Audio-Visual LLM for Video Understanding [25.963166809113005]
This paper presents Audio-Visual LLM, a Multimodal Large Language Model that takes both visual and auditory inputs for holistic video understanding.
We introduce a high-quality video instruction dataset, derived from GPT-4.
Experiments demonstrate that Audio-Visual LLM impressively achieves strong zero-shot results across a range of video understanding tasks.
arXiv Detail & Related papers (2023-12-11T02:50:46Z) - SEED-Bench-2: Benchmarking Multimodal Large Language Models [67.28089415198338]
Multimodal large language models (MLLMs) have recently demonstrated exceptional capabilities in generating not only texts but also images given interleaved multimodal inputs.
SEED-Bench-2 comprises 24K multiple-choice questions with accurate human annotations, which spans 27 dimensions.
We evaluate the performance of 23 prominent open-source MLLMs and summarize valuable observations.
arXiv Detail & Related papers (2023-11-28T05:53:55Z) - Fine-grained Audio-Visual Joint Representations for Multimodal Large
Language Models [25.660343393359565]
This paper proposes a fine-grained audio-visual joint representation (FAVOR) learning framework for multimodal large language models (LLM)
FAVOR simultaneously perceive speech and audio events in the audio input stream and images or videos in the visual input stream, at the frame level.
An interactive demo of FAVOR is available at https://github.com/BriansIDP/AudioVisualLLM.git, and the training code and model checkpoints will be released soon.
arXiv Detail & Related papers (2023-10-09T17:00:20Z) - AV-SUPERB: A Multi-Task Evaluation Benchmark for Audio-Visual Representation Models [92.92233932921741]
We propose the AV-SUPERB benchmark that enables general-purpose evaluation of unimodal audio/visual and bimodal fusion representations.
We evaluate 5 recent self-supervised models and show that none of these models generalize to all tasks.
We show that representations may be improved with intermediate-task fine-tuning and audio event classification with AudioSet serves as a strong intermediate task.
arXiv Detail & Related papers (2023-09-19T17:35:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.