Robust soybean seed yield estimation using high-throughput ground robot videos
- URL: http://arxiv.org/abs/2412.02642v1
- Date: Tue, 03 Dec 2024 18:13:51 GMT
- Title: Robust soybean seed yield estimation using high-throughput ground robot videos
- Authors: Jiale Feng, Samuel W. Blair, Timilehin Ayanlade, Aditya Balu, Baskar Ganapathysubramanian, Arti Singh, Soumik Sarkar, Asheesh K Singh,
- Abstract summary: Traditional methods for collecting yield data are labor-intensive, costly, prone to equipment failures at critical data collection times, and require transportation of equipment across field sites.
Computer vision, the field of teaching computers to interpret visual data, allows us to extract detailed yield information directly from images.
We present a novel method for soybean yield estimation leveraging high throughput seed counting via computer vision and deep learning techniques.
- Score: 8.084994998197569
- License:
- Abstract: We present a novel method for soybean (Glycine max (L.) Merr.) yield estimation leveraging high throughput seed counting via computer vision and deep learning techniques. Traditional methods for collecting yield data are labor-intensive, costly, prone to equipment failures at critical data collection times, and require transportation of equipment across field sites. Computer vision, the field of teaching computers to interpret visual data, allows us to extract detailed yield information directly from images. By treating it as a computer vision task, we report a more efficient alternative, employing a ground robot equipped with fisheye cameras to capture comprehensive videos of soybean plots from which images are extracted in a variety of development programs. These images are processed through the P2PNet-Yield model, a deep learning framework where we combined a Feature Extraction Module (the backbone of the P2PNet-Soy) and a Yield Regression Module to estimate seed yields of soybean plots. Our results are built on three years of yield testing plot data - 8500 in 2021, 2275 in 2022, and 650 in 2023. With these datasets, our approach incorporates several innovations to further improve the accuracy and generalizability of the seed counting and yield estimation architecture, such as the fisheye image correction and data augmentation with random sensor effects. The P2PNet-Yield model achieved a genotype ranking accuracy score of up to 83%. It demonstrates up to a 32% reduction in time to collect yield data as well as costs associated with traditional yield estimation, offering a scalable solution for breeding programs and agricultural productivity enhancement.
Related papers
- Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
This model is capable of simulating distinct growth stages of plants, diverse soil conditions, and randomized field arrangements under varying lighting conditions.
Our dataset includes 12,000 images with semantic labels, offering a comprehensive resource for computer vision tasks in precision agriculture.
arXiv Detail & Related papers (2024-03-27T08:42:47Z) - Enhanced Droplet Analysis Using Generative Adversarial Networks [0.0]
This work develops an image generator named DropletGAN to generate images of droplets.
It is also used to develop a light droplet detector using the synthetic dataset.
To the best of our knowledge, this work stands as the first to employ a generative model for augmenting droplet detection.
arXiv Detail & Related papers (2024-02-24T21:20:53Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNet is a dataset for mapping the presence of farms in the Ethiopian regions of Tigray and Amhara during 2020-2023.
We introduce a new approach based on the detection of harvest piles characteristic of many smallholder systems.
We conclude that remote sensing of harvest piles can contribute to more timely and accurate cropland assessments in food insecure regions.
arXiv Detail & Related papers (2023-08-23T11:03:28Z) - Agave crop segmentation and maturity classification with deep learning
data-centric strategies using very high-resolution satellite imagery [101.18253437732933]
We present an Agave tequilana Weber azul crop segmentation and maturity classification using very high resolution satellite imagery.
We solve real-world deep learning problems in the very specific context of agave crop segmentation.
With the resulting accurate models, agave production forecasting can be made available for large regions.
arXiv Detail & Related papers (2023-03-21T03:15:29Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
This study demonstrates the application of proximal imaging combined with deep learning for yield estimation in vineyards.
Three model architectures were tested: object detection, CNN regression, and transformer models.
The study showed the applicability of proximal imaging and deep learning for prediction of grapevine yield on a large scale.
arXiv Detail & Related papers (2022-08-04T01:34:46Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z) - YieldNet: A Convolutional Neural Network for Simultaneous Corn and
Soybean Yield Prediction Based on Remote Sensing Data [14.312926581466852]
We propose a new model called YieldNet that predicts yield of multiple crops and concurrently considers the interaction between multiple crop's yield.
Results demonstrate that our proposed method accurately predicts yield from one to four months before the harvest, and is competitive to other state-of-the-art approaches.
arXiv Detail & Related papers (2020-12-05T22:09:07Z) - Deep Multi-view Image Fusion for Soybean Yield Estimation in Breeding
Applications Deep Multi-view Image Fusion for Soybean Yield Estimation in
Breeding Applications [7.450586438835518]
The objective of this study is to develop a machine learning (ML) approach adept at soybean pod counting.
We developed a multi-view image-based yield estimation framework utilizing deep learning architectures.
Our results demonstrate the promise of ML models in making breeding decisions with significant reduction of time and human effort.
arXiv Detail & Related papers (2020-11-13T20:37:04Z) - Learning from Data to Optimize Control in Precision Farming [77.34726150561087]
Special issue presents the latest development in statistical inference, machine learning and optimum control for precision farming.
Satellite positioning and navigation followed by Internet-of-Things generate vast information that can be used to optimize farming processes in real-time.
arXiv Detail & Related papers (2020-07-07T12:44:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.