Enhanced Droplet Analysis Using Generative Adversarial Networks
- URL: http://arxiv.org/abs/2402.15909v3
- Date: Mon, 27 May 2024 12:33:36 GMT
- Title: Enhanced Droplet Analysis Using Generative Adversarial Networks
- Authors: Tan-Hanh Pham, Kim-Doang Nguyen,
- Abstract summary: This work develops an image generator named DropletGAN to generate images of droplets.
It is also used to develop a light droplet detector using the synthetic dataset.
To the best of our knowledge, this work stands as the first to employ a generative model for augmenting droplet detection.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Precision devices play an important role in enhancing production quality and productivity in agricultural systems. Therefore, the optimization of these devices is essential in precision agriculture. Recently, with the advancements of deep learning, there have been several studies aiming to harness its capabilities for improving spray system performance. However, the effectiveness of these methods heavily depends on the size of the training dataset, which is expensive and time-consuming to collect. To address the challenge of insufficient training samples, we developed an image generator named DropletGAN to generate images of droplets. The DropletGAN model is trained by using a small dataset captured by a high-speed camera and capable of generating images with progressively increasing resolution. The results demonstrate that the model can generate high-quality images with the size of 1024x1024. The generated images from the DropletGAN are evaluated using the Fr\'echet inception distance (FID) with an FID score of 11.29. Furthermore, this research leverages recent advancements in computer vision and deep learning to develop a light droplet detector using the synthetic dataset. As a result, the detection model achieves a 16.06% increase in mean average precision (mAP) when utilizing the synthetic dataset. To the best of our knowledge, this work stands as the first to employ a generative model for augmenting droplet detection. Its significance lies not only in optimizing nozzle design for constructing efficient spray systems but also in addressing the common challenge of insufficient data in various precision agriculture tasks. This work offers a critical contribution to conserving resources while striving for optimal and sustainable agricultural practices.
Related papers
- Generative AI-based Pipeline Architecture for Increasing Training Efficiency in Intelligent Weed Control Systems [0.0]
This study presents a new approach for generating synthetic images to improve deep learning-based object detection models for intelligent weed control.
Our GenAI-based image generation pipeline integrates the Segment Anything Model (SAM) for zero-shot domain adaptation with a text-to-image Stable Diffusion Model.
We evaluate these synthetic datasets using lightweight YOLO models, measuring data efficiency with mAP50 and mAP50-95 scores.
arXiv Detail & Related papers (2024-11-01T12:58:27Z) - Optimizing Resource Consumption in Diffusion Models through Hallucination Early Detection [87.22082662250999]
We introduce HEaD (Hallucination Early Detection), a new paradigm designed to swiftly detect incorrect generations at the beginning of the diffusion process.
We demonstrate that using HEaD saves computational resources and accelerates the generation process to get a complete image.
Our findings reveal that HEaD can save up to 12% of the generation time on a two objects scenario.
arXiv Detail & Related papers (2024-09-16T18:00:00Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - E$^{2}$GAN: Efficient Training of Efficient GANs for Image-to-Image Translation [69.72194342962615]
We introduce and address a novel research direction: can the process of distilling GANs from diffusion models be made significantly more efficient?
First, we construct a base GAN model with generalized features, adaptable to different concepts through fine-tuning, eliminating the need for training from scratch.
Second, we identify crucial layers within the base GAN model and employ Low-Rank Adaptation (LoRA) with a simple yet effective rank search process, rather than fine-tuning the entire base model.
Third, we investigate the minimal amount of data necessary for fine-tuning, further reducing the overall training time.
arXiv Detail & Related papers (2024-01-11T18:59:14Z) - UAV-Sim: NeRF-based Synthetic Data Generation for UAV-based Perception [62.71374902455154]
We leverage recent advancements in neural rendering to improve static and dynamic novelview UAV-based image rendering.
We demonstrate a considerable performance boost when a state-of-the-art detection model is optimized primarily on hybrid sets of real and synthetic data.
arXiv Detail & Related papers (2023-10-25T00:20:37Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - Deep Data Augmentation for Weed Recognition Enhancement: A Diffusion
Probabilistic Model and Transfer Learning Based Approach [17.860192771292713]
We present the first work of applying diffusion probabilistic models to generate high-quality synthetic weed images.
The developed approach consistently outperforms several state-of-the-art GAN models.
The expanding dataset with synthetic weed images can apparently boost model performance on four deep learning (DL) models for the weed classification tasks.
arXiv Detail & Related papers (2022-10-18T01:00:25Z) - Generative Adversarial Networks for Image Augmentation in Agriculture: A
Systematic Review [5.639656362091594]
generative adversarial network (GAN) invented in 2014 in the computer vision community, provides suite of novel approaches that can learn good data representations.
This paper presents an overview of the evolution of GAN architectures followed by a systematic review of their application to agriculture.
arXiv Detail & Related papers (2022-04-10T15:33:05Z) - A two-step machine learning approach for crop disease detection: an
application of GAN and UAV technology [0.0]
This paper presents a two-step machine learning approach that analyzes low-fidelity and high-fidelity images in sequence.
The results show an accuracy of 96.3% for the high-fidelity system and a 75.5% confidence level for our low-fidelity system.
arXiv Detail & Related papers (2021-09-19T03:51:20Z) - From Rain Generation to Rain Removal [67.71728610434698]
We build a full Bayesian generative model for rainy image where the rain layer is parameterized as a generator.
We employ the variational inference framework to approximate the expected statistical distribution of rainy image.
Comprehensive experiments substantiate that the proposed model can faithfully extract the complex rain distribution.
arXiv Detail & Related papers (2020-08-08T18:56:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.