論文の概要: Optimized CNNs for Rapid 3D Point Cloud Object Recognition
- arxiv url: http://arxiv.org/abs/2412.02855v1
- Date: Tue, 03 Dec 2024 21:42:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:09:25.111943
- Title: Optimized CNNs for Rapid 3D Point Cloud Object Recognition
- Title(参考訳): 高速3Dポイントクラウド物体認識のための最適化CNN
- Authors: Tianyi Lyu, Dian Gu, Peiyuan Chen, Yaoting Jiang, Zhenhong Zhang, Huadong Pang, Li Zhou, Yiping Dong,
- Abstract要約: 本研究では,畳み込みニューラルネットワーク(CNN)を用いて3次元点雲内の物体を効率的に検出する手法を提案する。
提案手法では特徴中心の投票機構を採用して,入力データで観測される典型的な疎度を生かした畳み込み層を構築する。
Vote3Deepモデルは、わずか3層で、レーザーのみのアプローチとレーザービジョンを組み合わせた手法の両方において、これまでの最先端よりも優れている。
- 参考スコア(独自算出の注目度): 2.6462438855724826
- License:
- Abstract: This study introduces a method for efficiently detecting objects within 3D point clouds using convolutional neural networks (CNNs). Our approach adopts a unique feature-centric voting mechanism to construct convolutional layers that capitalize on the typical sparsity observed in input data. We explore the trade-off between accuracy and speed across diverse network architectures and advocate for integrating an $\mathcal{L}_1$ penalty on filter activations to augment sparsity within intermediate layers. This research pioneers the proposal of sparse convolutional layers combined with $\mathcal{L}_1$ regularization to effectively handle large-scale 3D data processing. Our method's efficacy is demonstrated on the MVTec 3D-AD object detection benchmark. The Vote3Deep models, with just three layers, outperform the previous state-of-the-art in both laser-only approaches and combined laser-vision methods. Additionally, they maintain competitive processing speeds. This underscores our approach's capability to substantially enhance detection performance while ensuring computational efficiency suitable for real-time applications.
- Abstract(参考訳): 本研究では,畳み込みニューラルネットワーク(CNN)を用いて3次元点群内の物体を効率的に検出する手法を提案する。
提案手法では,特徴中心の投票機構を採用して,入力データに見られる典型的な疎度を生かした畳み込み層を構築する。
多様なネットワークアーキテクチャにおける精度と速度のトレードオフについて検討し、中間層内の間隔を増大させるためにフィルタアクティベーションに対する$\mathcal{L}_1$ペナルティを統合することを提唱する。
この研究は、大規模な3Dデータ処理を効果的に扱うために、スパース畳み込み層と$\mathcal{L}_1$正規化を組み合わせた提案を開拓した。
本手法の有効性は,MVTec 3D-ADオブジェクト検出ベンチマークで実証された。
Vote3Deepモデルは、わずか3層で、レーザーのみのアプローチとレーザービジョンの組み合わせの両方で、これまでの最先端よりも優れている。
さらに、競合する処理速度も維持する。
このことは,リアルタイムアプリケーションに適した計算効率を確保しつつ,検出性能を大幅に向上させるアプローチの能力を裏付けるものである。
関連論文リスト
- Efficient Spatio-Temporal Signal Recognition on Edge Devices Using PointLCA-Net [0.45609532372046985]
本稿では、ポイントネットの特徴抽出とインメモリコンピューティング能力と時間信号認識のためのニューロモルフィックシステムのエネルギー効率を組み合わせたアプローチを提案する。
PointNetは、推定とトレーニングの両方において、同等のアプローチよりも高い精度とエネルギー負担を著しく低減します。
論文 参考訳(メタデータ) (2024-11-21T20:48:40Z) - ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and Cost Volume-based Flow Prediction [89.89610257714006]
既存の手法は、これらのタスクの要求に応えるために高い精度を優先する。
本稿では,3次元セマンティック占有率予測とフロー推定のための一連の改善点を紹介する。
私たちの純粋な時間的アーキテクチャフレームワークであるALOccは、速度と精度の最適なトレードオフを実現しています。
論文 参考訳(メタデータ) (2024-11-12T11:32:56Z) - DM3D: Distortion-Minimized Weight Pruning for Lossless 3D Object Detection [42.07920565812081]
本稿では,3次元物体検出のための新しいトレーニング後の重み付け手法を提案する。
事前訓練されたモデルにおける冗長パラメータを決定し、局所性と信頼性の両方において最小限の歪みをもたらす。
本フレームワークは,ネットワーク出力の歪みを最小限に抑え,検出精度を最大に維持することを目的とする。
論文 参考訳(メタデータ) (2024-07-02T09:33:32Z) - Cross-Cluster Shifting for Efficient and Effective 3D Object Detection
in Autonomous Driving [69.20604395205248]
本稿では,自律運転における3次元物体検出のための3次元点検出モデルであるShift-SSDを提案する。
我々は、ポイントベース検出器の表現能力を解き放つために、興味深いクロスクラスタシフト操作を導入する。
我々は、KITTI、ランタイム、nuScenesデータセットに関する広範な実験を行い、Shift-SSDの最先端性能を実証した。
論文 参考訳(メタデータ) (2024-03-10T10:36:32Z) - Deepfake Detection: Leveraging the Power of 2D and 3D CNN Ensembles [0.0]
本研究は,映像コンテンツの検証に革新的なアプローチを提案する。
この手法は高度な2次元および3次元畳み込みニューラルネットワークをブレンドする。
実験による検証は、この戦略の有効性を強調し、ディープフェイクの発生に対処する可能性を示している。
論文 参考訳(メタデータ) (2023-10-25T06:00:37Z) - KECOR: Kernel Coding Rate Maximization for Active 3D Object Detection [48.66703222700795]
我々は、ラベルの取得に最も有用なポイントクラウドを特定するために、新しいカーネル戦略を利用する。
1段目(SECOND)と2段目(SECOND)の両方に対応するため、アノテーションに選択した境界ボックスの総数と検出性能のトレードオフをよく組み込んだ分類エントロピー接点を組み込んだ。
その結果,ボックスレベルのアノテーションのコストは約44%,計算時間は26%削減された。
論文 参考訳(メタデータ) (2023-07-16T04:27:03Z) - Boosting the Efficiency of Parametric Detection with Hierarchical Neural
Networks [4.1410005218338695]
高速検出のための新しい手法として階層型検出ネットワーク(HDN)を提案する。
ネットワークは、統計的精度と効率の目標を同時に符号化する新しい損失関数を用いて訓練される。
2層モデルを用いた3層HDNのトレーニングにより,精度と効率が向上することを示す。
論文 参考訳(メタデータ) (2022-07-23T19:23:00Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
モノクロ3次元物体検出は、2次元入力画像から物体の位置と特性を抽出することを目的としている。
従来のアプローチでは、空間から3D境界ボックスをサンプリングし、対象オブジェクトと各オブジェクトの関係を推定するが、有効サンプルの確率は3D空間で比較的小さい。
我々は,まず最初の予測から始めて,各ステップで1つの3dパラメータだけを変えて,基礎的真理に向けて徐々に洗練することを提案する。
これは、いくつかのステップの後に報酬を得るポリシーを設計する必要があるため、最適化するために強化学習を採用します。
論文 参考訳(メタデータ) (2020-08-31T17:10:48Z) - 3DSSD: Point-based 3D Single Stage Object Detector [61.67928229961813]
本稿では,3DSSDと命名された点ベース3次元単段物体検出器を提案し,精度と効率のバランスが良好であることを示す。
提案手法は,最先端のボクセルをベースとした一段法を大差で上回り,二段法に匹敵する性能を有する。
論文 参考訳(メタデータ) (2020-02-24T12:01:58Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
ハイパースペクトル画像超解像のための新しいスペクトル空間残差ネットワーク(SSRNet)を提案する。
提案手法は,2次元畳み込みではなく3次元畳み込みを用いて空間スペクトル情報の探索を効果的に行うことができる。
各ユニットでは空間的・時間的分離可能な3次元畳み込みを用いて空間的・スペクトル的な情報を抽出する。
論文 参考訳(メタデータ) (2020-01-14T03:34:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。