論文の概要: MedAutoCorrect: Image-Conditioned Autocorrection in Medical Reporting
- arxiv url: http://arxiv.org/abs/2412.02971v1
- Date: Wed, 04 Dec 2024 02:32:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:08:27.603987
- Title: MedAutoCorrect: Image-Conditioned Autocorrection in Medical Reporting
- Title(参考訳): MedAutoCorrect:医療報告における画像共有自動補正
- Authors: Arnold Caleb Asiimwe, Dídac Surís, Pranav Rajpurkar, Carl Vondrick,
- Abstract要約: 医療報告では、人や機械学習アルゴリズムが生み出す放射線学的な報告の正確さが重要である。
本稿では,これらの報告における不正確な画像条件の自動補正という新たな課題に取り組む。
本稿では,これらの誤りを指摘し,修正を行い,テキスト自動補正プロセスをシミュレートする2段階のフレームワークを提案する。
- 参考スコア(独自算出の注目度): 31.710972402763527
- License:
- Abstract: In medical reporting, the accuracy of radiological reports, whether generated by humans or machine learning algorithms, is critical. We tackle a new task in this paper: image-conditioned autocorrection of inaccuracies within these reports. Using the MIMIC-CXR dataset, we first intentionally introduce a diverse range of errors into reports. Subsequently, we propose a two-stage framework capable of pinpointing these errors and then making corrections, simulating an \textit{autocorrection} process. This method aims to address the shortcomings of existing automated medical reporting systems, like factual errors and incorrect conclusions, enhancing report reliability in vital healthcare applications. Importantly, our approach could serve as a guardrail, ensuring the accuracy and trustworthiness of automated report generation. Experiments on established datasets and state of the art report generation models validate this method's potential in correcting medical reporting errors.
- Abstract(参考訳): 医療報告では、人や機械学習アルゴリズムが生み出す放射線学的な報告の正確さが重要である。
本稿では,これらの報告における不正確な画像条件の自動補正という新たな課題に取り組む。
まず、MIMIC-CXRデータセットを用いて、様々なエラーをレポートに意図的に導入する。
次に,これらのエラーをピンポイントし,修正を行い,その過程をシミュレートする2段階のフレームワークを提案する。
本手法は, 事実誤りや誤った結論などの既存の自動医療報告システムの欠点に対処し, 重要な医療応用における報告信頼性を高めることを目的としている。
重要なことは、当社のアプローチがガードレールとして機能し、自動レポート生成の正確性と信頼性を確保します。
確立されたデータセットと最先端のレポート生成モデルの実験は、医療報告エラーの修正におけるこの方法の可能性を検証する。
関連論文リスト
- Resource-Efficient Medical Report Generation using Large Language Models [3.2627279988912194]
医療報告生成は胸部X線画像の放射線診断レポートを自動作成する作業である。
本稿では,医療報告生成のタスクに視覚対応大規模言語モデル(LLM)を活用する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-21T05:08:18Z) - ReXErr: Synthesizing Clinically Meaningful Errors in Diagnostic Radiology Reports [1.9106067578277455]
胸部X線レポート内の代表的エラーを生成するために,大規模言語モデルを活用する手法であるReXErrを紹介する。
我々は、人間とAIが生成したレポートでよくある誤りを捉えるエラーカテゴリを開発した。
本手法は, 臨床応用可能性を維持しつつ, 多様な誤差を注入する新しいサンプリング手法を用いている。
論文 参考訳(メタデータ) (2024-09-17T01:42:39Z) - WangLab at MEDIQA-CORR 2024: Optimized LLM-based Programs for Medical Error Detection and Correction [5.7931394318054155]
3つのサブタスクすべてでトップパフォーマンスを達成したアプローチを提示する。
微妙な誤りを含むMSデータセットに対して,検索に基づくシステムを開発した。
UWデータセットでは、より現実的な臨床ノートを反映して、エラーを検出し、ローカライズし、修正するためのモジュールのパイプラインを作成しました。
論文 参考訳(メタデータ) (2024-04-22T19:31:45Z) - MedCycle: Unpaired Medical Report Generation via Cycle-Consistency [11.190146577567548]
一貫性のあるラベリングスキーマを必要としない革新的なアプローチを導入する。
このアプローチは、画像埋め込みをレポート埋め込みに変換するサイクル一貫性マッピング関数に基づいている。
胸部X線所見の発生は、最先端の結果よりも優れており、言語と臨床の両方の指標の改善が示されている。
論文 参考訳(メタデータ) (2024-03-20T09:40:11Z) - ICON: Improving Inter-Report Consistency in Radiology Report Generation via Lesion-aware Mixup Augmentation [14.479606737135045]
我々は,放射線学レポート生成のレポート間一貫性を改善するICONを提案する。
まず,入力画像から病変を抽出し,その特徴について検討する。
次に, 意味論的に等価な病変の表現が同一の属性と一致することを確実にするために, 病変認識ミックスアップ手法を導入する。
論文 参考訳(メタデータ) (2024-02-20T09:13:15Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - Automated Medical Coding on MIMIC-III and MIMIC-IV: A Critical Review
and Replicability Study [60.56194508762205]
我々は、最先端の医療自動化機械学習モデルを再現し、比較し、分析する。
その結果, 弱い構成, サンプル化の不十分さ, 評価の不十分さなどにより, いくつかのモデルの性能が低下していることが判明した。
再生モデルを用いたMIMIC-IVデータセットの総合評価を行った。
論文 参考訳(メタデータ) (2023-04-21T11:54:44Z) - Factual Error Correction for Abstractive Summaries Using Entity
Retrieval [57.01193722520597]
本稿では,エンティティ検索後処理に基づく効率的な事実誤り訂正システムRFECを提案する。
RFECは、原文と対象要約とを比較して、原文から証拠文を検索する。
次に、RFECは、エビデンス文を考慮し、要約中のエンティティレベルのエラーを検出し、エビデンス文から正確なエンティティに置換する。
論文 参考訳(メタデータ) (2022-04-18T11:35:02Z) - Variational Topic Inference for Chest X-Ray Report Generation [102.04931207504173]
医療画像のレポート生成は、作業負荷を減らし、臨床実習における診断を支援することを約束する。
近年の研究では、ディープラーニングモデルが自然画像のキャプションに成功していることが示された。
本稿では,自動レポート生成のための変分トピック推論を提案する。
論文 参考訳(メタデータ) (2021-07-15T13:34:38Z) - Chest X-ray Report Generation through Fine-Grained Label Learning [46.352966049776875]
画像から詳細な所見を学習する領域認識自動胸部X線診断レポート生成アルゴリズムを提案する。
また、画像にそのような記述子を割り当てる自動ラベリングアルゴリズムを開発し、発見の粗い記述ときめ細かい記述の両方を認識する新しいディープラーニングネットワークを構築した。
論文 参考訳(メタデータ) (2020-07-27T19:50:56Z) - CLARA: Clinical Report Auto-completion [56.206459591367405]
CLARA(CLinicit Al It Report It Auto-Completion)は、医師のアンカーワードと部分的に完成した文に基づいて、文章でレポートを生成するインタラクティブな方法である。
実験では,X線で0.393 CIDEr,0.248 BLEU-4,脳波で0.482 CIDEr,0.491 BLEU-4を得た。
論文 参考訳(メタデータ) (2020-02-26T18:45:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。