論文の概要: Surveying the Effects of Quality, Diversity, and Complexity in Synthetic Data From Large Language Models
- arxiv url: http://arxiv.org/abs/2412.02980v1
- Date: Wed, 04 Dec 2024 02:47:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:10:15.413581
- Title: Surveying the Effects of Quality, Diversity, and Complexity in Synthetic Data From Large Language Models
- Title(参考訳): 大規模言語モデルからの合成データにおける品質・多様性・複雑さの影響調査
- Authors: Alex Havrilla, Andrew Dai, Laura O'Mahony, Koen Oostermeijer, Vera Zisler, Alon Albalak, Fabrizio Milo, Sharath Chandra Raparthy, Kanishk Gandhi, Baber Abbasi, Duy Phung, Maia Iyer, Dakota Mahan, Chase Blagden, Srishti Gureja, Mohammed Hamdy, Wen-Ding Li, Giovanni Paolini, Pawan Sasanka Ammanamanchi, Elliot Meyerson,
- Abstract要約: データ品質,多様性,複雑性の観点から,各アルゴリズムが生成した合成データの構成によるアルゴリズムの評価を行った。
合成データパイプラインにおける各種成分が各データ特性に与える影響について検討する。
これらのトレードオフのバランスは、将来の自己改善アルゴリズムの開発に不可欠である、と我々は主張する。
- 参考スコア(独自算出の注目度): 12.85318938363753
- License:
- Abstract: Synthetic data generation with Large Language Models is a promising paradigm for augmenting natural data over a nearly infinite range of tasks. Given this variety, direct comparisons among synthetic data generation algorithms are scarce, making it difficult to understand where improvement comes from and what bottlenecks exist. We propose to evaluate algorithms via the makeup of synthetic data generated by each algorithm in terms of data quality, diversity, and complexity. We choose these three characteristics for their significance in open-ended processes and the impact each has on the capabilities of downstream models. We find quality to be essential for in-distribution model generalization, diversity to be essential for out-of-distribution generalization, and complexity to be beneficial for both. Further, we emphasize the existence of Quality-Diversity trade-offs in training data and the downstream effects on model performance. We then examine the effect of various components in the synthetic data pipeline on each data characteristic. This examination allows us to taxonomize and compare synthetic data generation algorithms through the components they utilize and the resulting effects on data QDC composition. This analysis extends into a discussion on the importance of balancing QDC in synthetic data for efficient reinforcement learning and self-improvement algorithms. Analogous to the QD trade-offs in training data, often there exist trade-offs between model output quality and output diversity which impact the composition of synthetic data. We observe that many models are currently evaluated and optimized only for output quality, thereby limiting output diversity and the potential for self-improvement. We argue that balancing these trade-offs is essential to the development of future self-improvement algorithms and highlight a number of works making progress in this direction.
- Abstract(参考訳): 大規模言語モデルを用いた合成データ生成は、ほぼ無限のタスクで自然データを増やすための有望なパラダイムである。
この多様性を考えると、合成データ生成アルゴリズム間の直接比較は少ないため、改善がどこから来るのか、ボトルネックが存在するのかを理解することは困難である。
本稿では,データ品質,多様性,複雑さの観点から,各アルゴリズムが生成する合成データの構成によるアルゴリズムの評価を提案する。
これらの3つの特徴は、オープンエンドプロセスにおけるそれらの重要性と、下流モデルの能力に対する影響である。
我々は、分配モデル一般化に欠かせない品質、分配モデル一般化に欠かせない多様性、双方にとって有益な複雑さを見出した。
さらに、トレーニングデータにおける品質と多様性のトレードオフの存在と、モデル性能に対する下流の影響を強調した。
次に、合成データパイプラインにおける各種成分が各データ特性に与える影響について検討する。
本研究により, 合成データ生成アルゴリズムの分類と, 利用した成分と結果がデータQDC組成に与える影響を比較することができる。
この分析は、効率的な強化学習と自己改善アルゴリズムのための合成データにおけるQDCのバランスの重要性について議論する。
トレーニングデータにおけるQDトレードオフとは対照的に、しばしば、モデル出力品質と合成データの合成に影響を及ぼす出力の多様性との間にトレードオフが存在する。
多くのモデルが現在評価され、出力品質のみに最適化されているため、出力の多様性と自己改善の可能性を制限することができる。
これらのトレードオフのバランスは、将来の自己改善アルゴリズムの開発に不可欠であり、この方向に進む多くの研究を強調している。
関連論文リスト
- On the Diversity of Synthetic Data and its Impact on Training Large Language Models [34.00031258223175]
大規模言語モデル(LLM)は、多種多様な高品質な事前学習データの必要性を強調している。
合成データは、データの不足とアクセシビリティの課題に対する、実行可能なソリューションとして現れます。
本研究では, 事前学習および微調整段階における合成データ多様性の下流効果について検討した。
論文 参考訳(メタデータ) (2024-10-19T22:14:07Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - Synthetic Oversampling: Theory and A Practical Approach Using LLMs to Address Data Imbalance [16.047084318753377]
不均衡なデータと急激な相関は、機械学習とデータサイエンスにおける一般的な課題である。
過度に表現されていないクラスのインスタンス数を人工的に増加させるオーバーサンプリングは、これらの課題に対処するために広く採用されている。
我々は,大規模言語モデルの能力を活用して,少数グループを対象とした高品質な合成データを生成する,体系的なオーバーサンプリング手法であるOPALを紹介する。
論文 参考訳(メタデータ) (2024-06-05T21:24:26Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
AIモデルの成功は、大規模で多様な、高品質なデータセットの可用性に依存している。
合成データは、現実世界のパターンを模倣する人工データを生成することによって、有望なソリューションとして現れてきた。
論文 参考訳(メタデータ) (2024-04-11T06:34:17Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - Does Synthetic Data Make Large Language Models More Efficient? [0.0]
本稿では,NLPにおける合成データ生成のニュアンスについて考察する。
データ拡張の可能性や構造化品種の導入など、その利点を強調します。
テンプレートベースの合成データが現代の変圧器モデルの性能に与える影響を実証する。
論文 参考訳(メタデータ) (2023-10-11T19:16:09Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - Analyzing Effects of Fake Training Data on the Performance of Deep
Learning Systems [0.0]
ディープラーニングモデルは、クラス不均衡や分散シフトに対する堅牢性の欠如など、さまざまな問題に悩まされることが多い。
GAN(Generative Adversarial Networks)の出現により、高品質な合成データを生成することが可能になった。
本研究では, 各種合成データと原データとを混合した場合, アウト・オブ・ディストリビューションデータに対するモデルの堅牢性と, 予測の一般品質に影響を及ぼす影響を解析する。
論文 参考訳(メタデータ) (2023-03-02T13:53:22Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
本稿ではCAFE(Aligning features)によるCondenseデータセットの新しいスキームを提案する。
このアプローチの核心は、さまざまなスケールにわたる実データと合成データから機能を整合させる効果的な戦略です。
提案したCAFEを様々なデータセットで検証し,概ね最先端技術であることを示す。
論文 参考訳(メタデータ) (2022-03-03T05:58:49Z) - Transitioning from Real to Synthetic data: Quantifying the bias in model [1.6134566438137665]
本研究では,合成データを用いたモデルにおけるバイアスと公平性のトレードオフを確立することを目的とする。
合成データを用いて訓練したモデルには、様々なレベルのバイアスの影響があることを実証する。
論文 参考訳(メタデータ) (2021-05-10T06:57:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。