EchoONE: Segmenting Multiple echocardiography Planes in One Model
- URL: http://arxiv.org/abs/2412.02993v1
- Date: Wed, 04 Dec 2024 03:19:43 GMT
- Title: EchoONE: Segmenting Multiple echocardiography Planes in One Model
- Authors: Jiongtong Hu, Wei Zhuo, Jun Cheng, Yingying Liu, Wufeng Xue, Dong Ni,
- Abstract summary: Multi-plane segmentation problem is highly demanded for medical images.
We propose a novel solution, EchoONE, for this problem with a SAM-based segmentation architecture.
We demonstrate consistently state-of-the-art performance for multi-source datasets with different heart planes.
- Score: 9.488682094280767
- License:
- Abstract: In clinical practice of echocardiography examinations, multiple planes containing the heart structures of different view are usually required in screening, diagnosis and treatment of cardiac disease. AI models for echocardiography have to be tailored for each specific plane due to the dramatic structure differences, thus resulting in repetition development and extra complexity. Effective solution for such a multi-plane segmentation (MPS) problem is highly demanded for medical images, yet has not been well investigated. In this paper, we propose a novel solution, EchoONE, for this problem with a SAM-based segmentation architecture, a prior-composable mask learning (PC-Mask) module for semantic-aware dense prompt generation, and a learnable CNN-branch with a simple yet effective local feature fusion and adaption (LFFA) module for SAM adapting. We extensively evaluated our method on multiple internal and external echocardiography datasets, and achieved consistently state-of-the-art performance for multi-source datasets with different heart planes. This is the first time that the MPS problem is solved in one model for echocardiography data. The code will be available at https://github.com/a2502503/EchoONE.
Related papers
- Multi-Class Segmentation of Aortic Branches and Zones in Computed Tomography Angiography: The AortaSeg24 Challenge [55.252714550918824]
AortaSeg24 MICCAI Challenge introduced the first dataset of 100 CTA volumes annotated for 23 clinically relevant aortic branches and zones.
This paper presents the challenge design, dataset details, evaluation metrics, and an in-depth analysis of the top-performing algorithms.
arXiv Detail & Related papers (2025-02-07T21:09:05Z) - EchoFM: Foundation Model for Generalizable Echocardiogram Analysis [22.585990526913246]
We introduce EchoFM, a foundation model specifically designed to represent and analyze echocardiography videos.
In EchoFM, we propose a self-supervised learning framework that captures both spatial and temporal variability.
We pre-train our model on an extensive dataset comprising over 290,000 echocardiography videos, with up to 20 million frames of images.
arXiv Detail & Related papers (2024-10-30T19:32:02Z) - Unlocking the Power of Spatial and Temporal Information in Medical Multimodal Pre-training [99.2891802841936]
We introduce the Med-ST framework for fine-grained spatial and temporal modeling.
For spatial modeling, Med-ST employs the Mixture of View Expert (MoVE) architecture to integrate different visual features from both frontal and lateral views.
For temporal modeling, we propose a novel cross-modal bidirectional cycle consistency objective by forward mapping classification (FMC) and reverse mapping regression (RMR)
arXiv Detail & Related papers (2024-05-30T03:15:09Z) - GL-Fusion: Global-Local Fusion Network for Multi-view Echocardiogram
Video Segmentation [15.8851111502473]
We propose a novel Gobal-Local fusion (GL-Fusion) network to jointly utilize multi-view information globally and locally.
A Multi-view Global-based Fusion Module (MGFM) is proposed to extract global context information.
A Multi-view Local-based Fusion Module (MLFM) is designed to extract correlations of cardiac structures from different views.
arXiv Detail & Related papers (2023-09-20T08:43:40Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - AWSnet: An Auto-weighted Supervision Attention Network for Myocardial
Scar and Edema Segmentation in Multi-sequence Cardiac Magnetic Resonance
Images [23.212429566838203]
We develop a novel auto-weighted supervision framework to tackle the scar and edema segmentation from multi-sequence CMR data.
We also design a coarse-to-fine framework to boost the small myocardial pathology region segmentation with shape prior knowledge.
Our method is promising in advancing the myocardial pathology assessment on multi-sequence CMR data.
arXiv Detail & Related papers (2022-01-14T08:59:54Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
We propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan.
MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations.
We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing.
arXiv Detail & Related papers (2021-07-07T19:06:34Z) - Studying Robustness of Semantic Segmentation under Domain Shift in
cardiac MRI [0.8858288982748155]
We study challenges and opportunities of domain transfer across images from multiple clinical centres and scanner vendors.
In this work, we build upon a fixed U-Net architecture configured by the nnU-net framework to investigate various data augmentation techniques and batch normalization layers.
arXiv Detail & Related papers (2020-11-15T17:50:23Z) - Fed-Sim: Federated Simulation for Medical Imaging [131.56325440976207]
We introduce a physics-driven generative approach that consists of two learnable neural modules.
We show that our data synthesis framework improves the downstream segmentation performance on several datasets.
arXiv Detail & Related papers (2020-09-01T19:17:46Z) - Learning Directional Feature Maps for Cardiac MRI Segmentation [13.389141642517762]
We propose a novel method to exploit the directional feature maps, which can simultaneously strengthen the differences between classes and the similarities within classes.
Specifically, we perform cardiac segmentation and learn a direction field pointing away from the nearest cardiac tissue boundary to each pixel.
Based on the learned direction field, we then propose a feature rectification and fusion (FRF) module to improve the original segmentation features.
arXiv Detail & Related papers (2020-07-22T11:31:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.